
1

Introduction to

Computing on Raad2

Research Computing

Nov 2017

2

Overview

 Introduction to supercomputers

 Our supercomputer “Raad2”

 Resource management & job scheduling

 Using SLURM to “submit” jobs

 Managing the user environment with the “module” utility

The “Introduction to Linux” short course offered by Research Computing should be treated

as a prerequisite for this one.

3

How & Where to Seek Assistance
 Research Computing Website

 https://rc.qatar.tamu.edu

 Primarily for general information about our work & services; account applications

 Research Computing Wiki

 https://rc-docs.qatar.tamu.edu

 Technical content for active users of our systems; user guides, training material, etc

 Service desk (email queries)

 servicedesk@qatar.tamu.edu

 Email queries should:

 Have informative and relevant subject headers

 Mention the name of the HPC system & software package with which you are having problems

 Include relevant error/warning messages

 Mention locations of relevant files… job files, error output, etc.

 A clear description of the problem

 Walk-in assistance

 TAMUQ building, suite 125

 We will assist if available, or schedule an appointment with you if busy

https://rc.qatar.tamu.edu/
https://rc-docs.qatar.tamu.edu/
mailto:servicedesk@qatar.tamu.edu

4

Introduction to Supercomputers

5

What is a Supercomputer?

 Generic “big picture” description

 A type of parallel or distributed processing system, which consists of a

collection of interconnected computing elements working together as a

single computing resource

 A supercomputer is not a general purpose computer, and should not be

expected to be one

6

What is a Supercomputer?

 Generic “big picture” description

 A type of parallel or distributed processing system, which consists of a

collection of interconnected computing elements working together as a

single, integrated computing resource

 A supercomputer is not a general purpose computer, and should not be

expected to be one

 A supercomputer will normally have the capability to effectively bring a large

amount of computing resources to bear on a single large problem, and to

solve that problem in the shortest amount of time

7

Raad2 -- Logical Architecture

raad2a raad2b

raad2

Shared Storage

/lustre

1 2 3 172. . . .

TAMUQ

Network

Login Nodes

High Speed Internal Network

Compute Nodes

See next slide

for node

internals

local user

external

user

VPN

tunnel

8

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

Inside a Single Compute Node

Socket 0 Socket 1

core 23

core 0

core 5

core 18

9

Our Supercomputer: Raad2

10

Raad2 -- Physical Architecture

11

Why Use Supercomputers?

 Processing power

 Supercomputer compute nodes usually exceed the computing horsepower of desktop workstations. For highly

parallel workloads, there is no comparison between supercomputers and individual workstations.

 Scalability

 Specialized hardware enables parallel workloads to span hundreds of processors, and beyond. This is not feasible

even with networked collections of workstations.

 Availability

 Typically, there is no single point of failure. Compute node failures are isolated, and affected jobs can be re-started

on other available nodes.

 Reduced cost

 If system utilization is kept high, sharing a single supercomputer among a large group of users can ultimately be

more cost effective for the organization.

12

Supercomputer “Ingredients”

 Hardware

 Login & service nodes

 Compute nodes

 Interconnect fabric (a high-speed private network)

 Shared storage system

 Systems Software

 Operating system

 Supercomputer management software

 Batch system (or “resource manager”)

 Parallel file system

 User Applications

 Compilers, profilers, debuggers, parallel libraries & related tools

 ISV packages (Ansys, Matlab, Gaussian, LAMMPS, VASP, Gromacs, etc.)

13

Raad2 Details

Technical Specs

Host Name raad2.qatar.tamu.edu

Batch/Resource Scheduler SLURM 15.08

Operating System Cray Linux Environment (CLE) 5.2 – SLES 11 SP3

Number of Nodes 172

Aggregate Number of CPU Cores 4,128

Interconnect Aries

Aggregate System Memory 22 TB

Peak Performance 120+ TFLOPS

Local Compute Node Disks none

Shared Storage System Capacity 800 TB (usable)

Parallel Filesystem Lustre

14

Raad2 Compute Nodes

 Compute nodes are named nid00xyz

 xyz is a non-contiguous set of 3 digit integers (e.g. 008, 243, etc)

 each node contains 24 CPU cores & 128 GB of RAM

 there is NO local disk in any of the compute nodes

 Users cannot directly access any compute node (e.g. ssh nid00008 not allowed)

 Access only via the login nodes

 Access only by issuing requests to the SLURM batch system

15

User Home & Scratch Directories
 Your home directory resides at /lustre/home/username

 e.g. /lustre/home/fachaud74

 Your default disk quota is 500GB

 Applies to everything you own under /lustre, including /lustre/home

 Quota extensions can be considered based on strength of justification

 Home directory backups are performed frequently

 Full backups after every 4 week interval, on a Friday

 Incremental backups after every 2 day interval

 At any given time, the 2 most recent full backups & associated incrementals remain available

 A scratch directory for use by batch jobs is available under /lustre/scratch

 Job specific sub-directories need to be created & deleted manually by the requesting job

 Consult documentation on the RC Wiki on how to do this within your job file

 The /lustre/scratch directories are NOT backed up.

16

Available Software
 Compilers

 Cray: cc, ftn, CC

 GNU: gcc, gfortran, g++

 Intel: icc, ifort, icpc

 PGI: pgcc, pgfortran, pgc++

 MPI libraries

 Intel MPI

 Cray MPI

 User applications

 Ansys, Fluent, CFX

 Gaussian 09, GROMACS, VASP, LAMMPS

 Matlab, Mathematica

 HDF, NetCDF

 Complete list: https://rc-docs.qatar.tamu.edu/index.php/Hpc_soft2

https://rc-docs.qatar.tamu.edu/index.php/Hpc_soft2

17

Remote Access to Raad2
 VPN required for off-campus access

 First “log in” to the TAMUQ network, then log in to the Raad2 system

 VPN enhances protection against network-based attacks

 Detailed instructions on establishing a VPN connection

 https://rc-docs.qatar.tamu.edu/index.php/VPN

 SSH (secure shell)

 The only protocol allowed for login access on Raad2

 Provides encrypted communication

 Freely available for a variety of systems

 MobaXterm

 Remote access software for Windows PCs (freeware)

 The SSH protocol comes built-in

 The recommended remote access utility for RC users

 Raad2 runs the Linux OS. For Linux training, see:

 https://rc.qatar.tamu.edu/Pages/support/training/training.aspx

https://rc-docs.qatar.tamu.edu/index.php/VPN
https://rc.qatar.tamu.edu/Pages/support/training/training.aspx

18

EXERCISE: Log in to Raad2

 Following the instructor, set up your session to raad2 using MobaXterm

 Free software to remotely access linux systems from windows PCs

 https://mobaxterm.mobatek.net/download-home-edition.html

 Login in to raad2 using the session created earlier

 Supercomputer username will have a format like fachaud74

 Password for supercomputer account is independent of password for TAMUQ

domain account (the one used for VPN access when outside the TAMUQ building)

 Following the instructor, log in to raad2 using WinSCP to transfer some files

 Free software to transfer files between your PC and a remote linux system

 https://winscp.net/eng/download.php

19

Resource Management &

Job Scheduling

20

Typical Workflow

Login in to the supercomputer
(If required, establish VPN, then use any SSH client -- MobaXterm recommended)

Decide what resources you need
(in other words, write a job file)

Ask system for your resources
(“submit” the job… its like placing an order)

Let the system start your computation
(when your turn comes, this will happen on its own)

Monitor the computation
(track job status with specific commands)

Access your results
(examine output files in your home directory to see what happened)

21

Multiple users submit

multiple “jobs”

Jobs assigned to

compute nodes

Sharing Can Be Complicated

 Since a supercomputer is a shared computing

platform, how do we…

 keep track of availability of resources?

 account for usage by users and jobs?

 maximize system utilization?

 prioritize jobs, determine order of execution,

enforce “fairness”?

 This implies we need a “resource manager” and a

“job scheduler”

22

SLURM

 SLURM originally stood for “Simple Linux Utility for Resource Management”

 Free and open source

 Used on majority of the systems on the Top 500 list

23

The Role of SLURM

 SLURM: “This job is ready to run. Which specific resources should I assign

for this particular job to run on?”

 Resource allocation is one of the basic functions of SLURM

 memory

 sockets

 cores

 threads

 and more…

 SLURM: “There are so many jobs waiting to run. Which one is most

deserving to run next?”

 Job scheduling is another basic function of SLURM

 Supports complex scheduling algorithms

 Can prioritize jobs based on configurable parameters (job age, job size, job QOS, etc)

 SLURM also provides a mechanism for starting, executing & monitoring jobs

24

The Role of SLURM

 Incoming jobs are prioritized based on multiple factors

 Job priority changes over time due to some dynamic factors (job age, recent resource

consumption of requesting user, etc)

 Jobs are kept “pending” until the system is able to run them (i.e. until available

resources are found)

 Periodically, the highest ranked jobs are selected from the “pending” list to begin

execution

 Order of job execution is not necessarily “first in first out”

 Scheduling policy can be tuned to meet the needs of a given site

 Different types of workloads may have access to varying amounts and types of resources

 The system tracks resource consumption by job, so various limits can be enforced

 Users can also use SLURM commands to track resource availability and job status

 Resource usage is logged, potentially helping admins tune policies in the future

25

Other Resource Managers

 On our older system “raad” we used PBS Pro for resource allocation & job scheduling.
On raad2 we use SLURM.

 Some other similar products (from competing vendors/developers) include:

 However, basic idea of how these products work and the core functionality remains
conceptually similar.

 SLURM and PBS are functionally very much alike for most use cases. Syntax for job
files is different though.

ALPS (Cray) Maui

Torque Moab

LoadLeveler (IBM)

PBS Pro

LSF

SLURM

Resource Managers Job Schedulers

used on raad2

26

What Resources are Managed by SLURM?

 Resources are allocated to (and consumed by) jobs.

 Basic types of resources requested by SLURM jobs include…

 Amount of walltime (i.e. total run time) requested for a job

 Amount of physical memory requested per node

 Number of individual CPU’s (or compute nodes) requested for a job

 SLURM uses the concepts of partitions & Quality Of Service to

 Control the allocation of hardware resources to jobs

 Enforce resource limits on various categories of jobs

27

Partitions & Quality of Service

 The airplane cabin analogy

 A “partition” would equate to a particular cabin area (a specific set of seats)

 “Quality of Service” (QOS) would equate to “First Class”, “Business Class”, or

“Economy” depending on the type of boarding pass presented

 Metric 1: Seat dimensions & comfort

 Metric 2: Quality of food served

“first”

partition

“business”

partition

“economy”

partition

28

Partitions & Quality of Service

 Imagine a “universal” cabin area (i.e. partition)

 Any seat can instantly transform into economy, business, or first class

 Any class of passenger can be seated in any seat

 Seat configuration & food quality will depend on type of boarding pass (i.e. QOS level)

 We can also define certain limitations for each QOS

 “no more than 10 FC passengers in the universal partition”

 “a single EC customer can’t purchase more than 6 seats per flight”

“universal”

partition

FC

FC

FC FCBC

BCBC

BC

BC

BC

BC

BC

BC BC

BC

BC

FC

BC

29

Partitions & Quality of Service

 In this variant of our example, certain limitations on the Business Class and

First Class QOS passengers might make sense (for the “monkey” partition)…

 “No more than 30 of the 102 seats may be occupied by FC passengers”

 “No more than 72 of 102 seats may be occupied by BC passengers”

“monkey”

partition

FC

FC

FC FC BC

BC

BC

BC

BC

BC

BC

BC

BC BC

BC

BC

FC

BC

EC

“elephant”

partition

EC

EC EC

EC

EC

EC

EC

EC

EC EC

30

Partitions & Quality of Service
 Like the airline cabin, we can divide the supercomputer into different partitions

 Partitions can overlap; in fact, two partitions can be mapped to the same set of nodes

 At TAMUQ, partitions s_short & s_long map to the same set of nodes

 l_short & l_long map to a distinct second set of nodes

 At our site, every partition is configured to accept jobs subscribing only to one associated QOS

 Technically, of course, a single partition can accept jobs subscribing to different QOS’s

s_short
qos=ss

l_short
qos=ls

s_long
qos=sl

l_long
qos=ll

Supercomputer compute nodes

1

30 120

31

31

Quality of Service Metrics

 What defines a specific QOS on our system?

 Maximum # of CPUs that can be used in total at any given point in time

 “We can’t have more than 100 Economy Class passengers on this plane”

 Maximum # of CPUs that a single user can use at any given time

 “A single individual can’t purchase more than 6 Economy tickets/seats”

 Other metrics can also be added to this list, but at our site only the

above two are used to distinguish between different QOS’s.

32

overlapping partition

Partitions & QOS Levels Defined on Raad2

Partition Name

(QOS)

express

(ex)

s_short

(ss)

s_long

(sl)

s_debug

(sd)

l_short

(ls)

l_long

(ll)

Max walltime 1 hour 8 hrs 168 hrs 4 hrs 8 hrs 168 hrs

Max CPUs

per user
48 24 48 24 2 nodes 10 nodes

Max CPUs

per QOS
96 144 288 48 8 nodes 86 nodes

Default walltime 30 mins 2 hrs 24 hrs 1 hrs 2 hrs 24 hrs

Default memory 5,350 MB per allocated core when using #SBATCH --hint=nomultithread or 2,675 MB per core otherwise

The values above are subject to change. To display the actual configuration at any given time:

scontrol show partition

overlapping partition

33

Terminology

 “Will the real CPU please stand up?”

“Node” (server motherboard)
“Socket”

(physical chip installed

on the motherboard)

“Core” (physical CPU packaged inside the chip)

“Hyperthread”

(virtual or logical CPU inside the core)

34

CPU Resource Allocation

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

35

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

CPU Resource Allocation

36

CPU Resource Allocation

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

37

CPU Resource Allocation

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

This is the default SLURM behavior! In most cases

you don’t want this behavior.

38

Resource Allocation with --hint=nomultithread

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

39

Resource Allocation with --hint=nomultithread

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

40

Resource Allocation with --hint=nomultithread

Socket 0 Socket 1

6
4

 G
B

 m
e

m
o

ry

6
4

 G
B

 m
e

m
o

ry

core 23

core 0

core 5

core 18

To achieve this SLURM behavior, you must include

this in your job file:

#SBATCH --hint=nomultithread

41

Resource Allocation vs. Resource Consumption

 With certain #SBATCH directives in your job file, you are simply booking

resources.

 Once resources are assigned to you, how you use them or whether you use

them is a different matter.

 In most cases, SLURM will do a good job of limiting over-utilization

 Reserving 4 CPUs but attempting to use 5 or more instead

 Booking 12 hours of time, but attempting to run for longer

 Reserving 10 GB of memory but attempting to use more than that

 However, there is no straightforward solution to control deliberate under-

utilization.

 In all circumstances, users must make efforts to avoid wasting resources.

 Deliberate wastage will be punished.

42

Excessive Resource Requests

0

2

4

6

0 2 4 6 8 10

#
 o

f
 C

P
U

 C
o

re
s

 R
e

q
u

e
st

e
d

Requested Time (Hours)

1

2 3

4 5

6

7

8

 “My job will not take longer than 2 hours in the worst case …but

there’s no harm in requesting 4 hours.”

43

Excessive Resource Requests

 Excessive resource requirements can prevent you from benefitting from

scheduling optimizations that would otherwise allow your job to run earlier.

0

2

4

6

0 2 4 6 8 10

#
 o

f
 C

P
U

 C
o

re
s

 R
e

q
u

e
st

e
d

Requested Time (Hours)

1

2 3

4

5

6

7

8

44

Using SLURM

45

What Resources Do I Need?

 Job’s running time (walltime)

 Aim for reasonably accurate estimate. Don’t request excessive time without good reason.

 Partitions & QOS levels in the system

 Which partition & QOS makes most sense for my job? Don’t submit to the partition meant
for workloads of a different type.

 Job’s memory requirements

 Aim for reasonably accurate estimate. Don’t request excessive memory without good
reason.

 Number of nodes or CPU cores required

 Is my job serial, parallel? If parallel, how many CPUs or nodes should it be told to make
use of?

 Job’s environment

 Do I need to configure any variables in my shell environment in preparation to run the job?

46

What’s In a Job File?

 A SLURM batch job file is a text file with:

 SLURM directives

 Linux commands

 SLURM directives should always be at the beginning of the file and
each directive line should start with #SBATCH

 These directives communicate your needs/requests to SLURM.

 SLURM also defines certain environment variables that may be
accessed within a job file (e.g. working directory, shell, etc.).

47

Sample SLURM Job File

#!/bin/bash

#SBATCH –-job-name=MyDemoJob

#SBATCH –-partition=s_debug

#SBATCH –-qos=sd

This a comment. It is ignored.

#SBATCH –-time=00:05:00

#SBATCH –-ntasks=1

srun myprog.exe

• A job file such as the one above can be created in any text editor

• A single # sign without the SBATCH keyword denotes a comment

• SBATCH directives usually have both a long and a short form

(e.g. the 2 files above are functionally identical)

#!/bin/bash

#SBATCH -J MyDemoJob

#SBATCH -p s_debug

#SBATCH --qos=sd

This a comment. It is ignored.

#SBATCH -t 00:05:00

#SBATCH -n 1

srun myprog.exe

01_helloworld/run1.slurm 01_helloworld/run2.slurm

48

Job File Walk-Through

Line Explanation

#!/bin/bash
The first line specifies the linux shell that is to interpret this file; 99% of the time

there is no need to use anything other than “/bin/bash”.

Empty lines are ignored.

#SBATCH –J MyDemoJob This simply helps identify running jobs using a name tag of sorts.

#SBATCH –p s_debug This job will run in the s_debug partition.

#SBATCH –qos=sd This job will run with the quality of service called “sd”.

This is a comment. It is ignored. Anything to the right of a solitary # is a comment (except for “SBATCH” keyword).

#SBATCH –t 00:05:00 This job needs 5 minutes of walltime to do its thing.

#SBATCH –n 1 This job needs just a single CPU because it has only 1 task to launch.

srun myprog.exe “myprog.exe” is the user program that needs to be run; it is launched using srun.

A line beginning with # SBATCH is a comment. One beginning with #SBATCH is a directive.

no space allowed here for directives!

49

Common SLURM Directives
Directive (long & short) Description

--job-name=name

-J name

A string used to label a job with a name. Here, name can be up to 15 printable, non-

whitespace characters, and it will appear along with the job ID number when querying running

jobs on the system. If left unspecified, the default will be the name of the job file.

--nodes=count

-N count
Used to allocate count complete nodes (24 CPUs per node) to a job.

--partition=partition

-p partition
The partition from which your job will be assigned resources.

--qos=qos_name The quality of service level requested for your job.

--cpus-per-task=count

-c count

Commonly used by OpenMP jobs, where each task might want to spawn count threads, for

which count CPUs should be requested.

--ntasks=count

-n count

Used to request an allocation of count CPUs because the job intends to launch count tasks

within the job.

--error=filename

-e filename
Write error & warning messages (stderr) to filename.

--output=filename

-o filename

Write normal output (stdout) to filename. By default both standard output and standard error

are directed to a file called "slurm-%j.out", where "%j" is the job ID.

50

Common SLURM Directives
Directive (long & short) Description

--hint=multithread View each hyper-thread as an independent CPU resource for allocation to jobs. With this

option, SLURM will “see” 48 CPU’s in a node. Only communication intensive applications

will typically benefit from this.

--hint=nomultithread
View each hyper-thread pair as an independent CPU resource for allocation to jobs. With

this option, SLURM will only “see” 24 CPU’s in a node. Most compute intensive

applications will want to use this.

--mail-type=type
Notify user by email when certain event types occur. Common type values include NONE,

BEGIN, END, FAIL, REQUEUE, and ALL.

--mail-user=email The email address of the user to be notified.

--nodelist=nodenamelist

-w nodenamelist

Request a specific list of compute nodes for the job. The list may be specified in a format

like nid00[008,012]. This option is typically only useful for users who want to submit

additional jobs to a node already exclusively reserved for them by an earlier job which did

not use all the node resources.

--mem=count
Request count megabytes of real memory per node for the job. Using the suffixes K or G

one may request kilobytes or gigabytes instead (e.g. --mem=12G). The --mem and --mem-

per-cpu options are mutually exclusive.

--mem-per-cpu=count
Request memory (in megabytes) required per allocated CPU. The default mem per cpu

value is 5,350 MB when the --hint=nomultithread option is in effect, or 2,675 MB

otherwise.

51

Common SLURM Commands

Command What it does…

squeue Generate listing of all existing jobs in the system

sinfo Display the current state of partitions and nodes on the system (how busy they are)

scancel Kill one or more existing jobs

scontrol Display detailed job information

sbatch Submit a job for execution on the system; allocate resources for the job

srun Launch a task or program using the resources allocated by sbatch

sacct Display current and historical job information

Detailed Documentation

https://slurm.schedmd.com/archive/slurm-15.08-latest/man_index.html

52

The squeue Command

Command Example What it does…

squeue List all jobs currently present on the system

squeue -l List all jobs currently present on the system (more verbose)

squeue –u fachaud74 List all jobs from user fachaud74

squeue –u fachaud74 -–state=pending List all pending (i.e. waiting) jobs from user fachaud74

squeue -–state=running List all jobs on the system that are in the “running” state

Job States

PD = Pending CG* = Completing

R = Running F = Failed

CA = Cancelled

Output Formatting

The output from squeue is highly customizable. See the -o option in the

squeue man page. To experiment, try:

squeue -o "%.12i %.9u %.10P %.14j %.3t %22r %.11L %.5D %.4C %.16J %N"

A state of CG lasting longer than a few

minutes will require admin intervention to

clear from the system. Alert us via email

when this happens to your job.

*

53

The sinfo Command

Command Example What it does…

sinfo Display information about slurm nodes and partitions

sinfo -s Display only a partition state summary (w/out node details)

sinfo -N Display information in a node-oriented format

sinfo -n nid00010,nid00400 Display information only about nodes nid00010 and nid00400

sinfo -p l_long Display information only about the l_long partition

Output Formatting

The output from sinfo is highly customizable. See the -o option in the

sinfo man page. To experiment, try these customizations:

sinfo -o '%.10P %.15F %.20C %.12T'

sinfo -o '%.10P %.15F %.20C %.12T %N'

sinfo -o '%.10P %.15F %.20C %N'

The sinfo command often repeats information in its output due to the fact that at our site

multiple partitions are defined over the same set of nodes. This can be confusing!

54

The scancel Command

Command Example What it does…

scancel 1234 Kill the job with job ID 1234

scancel –u fachaud74 Kill all jobs from user fachaud74

scancel –u fachaud74 –state=pending Kill all pending jobs from user fachaud74

scancel –u fachaud74 –state=running Kill all running jobs from user fachaud74

 Users are permitted to kill only their own jobs

 The system administrator may kill any job

 In some cases, the user is unable to kill her jobs and the sys admin

must be requested to intervene to clear them from the system

55

The scontrol Command

Command Example What it does…

scontrol show job 1234 Display job information for job 1234

scontrol show partition l_long Display configuration information about partition l_long

fachaud74@raad2b:~> scontrol show job 1171482

JobId=1171482 JobName=myTest

UserId=fachaud74(7001) GroupId=rc.users(6001)

Priority=346 Nice=0 Account=default QOS=ll

JobState=RUNNING Reason=None Dependency=(null)

Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0

RunTime=6-15:39:31 TimeLimit=6-23:00:00 TimeMin=N/A

SubmitTime=2017-11-20T15:03:09 EligibleTime=2017-11-20T15:03:09

StartTime=2017-11-20T22:13:42 EndTime=2017-11-27T21:13:42

PreemptTime=None SuspendTime=None SecsPreSuspend=0

Partition=l_long AllocNode:Sid=raad2-int1:31795

ReqNodeList=(null) ExcNodeList=(null)

NodeList=nid00[051,228,247,405]

BatchHost=nid00051

NumNodes=4 NumCPUs=192 CPUs/Task=1 ReqB:S:C:T=0:0:*:1

TRES=cpu=192,mem=513600,node=4

Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*

MinCPUsNode=1 MinMemoryCPU=2675M MinTmpDiskNode=0

Features=(null) Gres=craynetwork:1 Reservation=(null)

Shared=USER Contiguous=0 Licenses=(null) Network=(null)

Command=/lustre/home/fachaud74/myTest.job

WorkDir=/lustre/home/fachaud74

StdErr=/lustre/home/fachaud74/myTest.o1171482

StdIn=/dev/null

StdOut=/lustre/home/fachaud74/myTest.o1171482

Power= SICP=0

56

sbatch & srun -- The difference?

 Sbatch is like the travel agency that books an entire block of

hotel rooms for a given holiday season, and then offers

individual rooms to customers over that period.

 Srun is like the vacationer who books a room for some time

from a particular travel agency.

 Normally, an sbatch command will reserve a collection of

resources (e.g. 4 compute nodes) for a particular job.

 One -- or multiple -- srun’s can be issued within a job file to

make use of subsets of the resources reserved by the sbatch

 srun cannot request resources greater in quantity than what the

corresponding sbatch has reserved for the job

 However, srun can independently launch a job (without

sbatch)

 In such cases, though, the system automatically constructs an

appropriate sbatch transparently, without explicit user

involvement

57

The sbatch Command

 Typically this command is issued with a batch file name as its only argument:

sbatch myBatchFile

 However, it may also accept command line options (like those found in the

#SBATCH directives inside the batch file itself).

 The sbatch command must be used to submit the job to the supercomputer

 Once accepted by SLURM, the job is assigned a unique job ID

 SLURM will begin job execution only when resources become available AND

when the job’s priority takes it to the head of the list of pending jobs.

SLURM job file name

Job ID

[fachaud74@raad2 ~]$ sbatch barebones1.slurm

Submitted batch job 1147521

[fachaud74@raad2 ~]$

58

The srun Command

 srun is a program launcher

 typically used inside a job file to launch any programs you need to run as

part of that job

 srun launches job “steps”

 A job may consist of a sequence of steps, and each step could be

launched by a different srun

 A job may also consist of multiple parallel streams of execution, and srun

can launch these parallel tasks as well, doing what programs like mpirun

would otherwise do

 Slurm accounting logs record information about job steps, and not just

about the job as a whole

 Launching programs without srun will often work, but sometimes

leads to tricky problems; as a rule of thumb, ALWAYS use srun

 Jobs may not terminate properly and get stuck in CG state

 Generally, instances of misbehavior are better managed by srun

59

The srun Command

 An srun appearing within a job file will inherit certain default values from the

#SBATCH directives of that job.

 For instance, an srun prog.exe inside a job file containing an #SBATCH

-n 24 directive will try to run prog.exe on 24 cores or threads

 But if we issued an srun -n 12 prog.exe it will use only 12 cores or threads

Command Example What it does…

srun prog.exe Launch the program prog.exe

srun --ntasks=12 prog.exe Launch prog.exe using 12 hyper-threads

srun --hint=nomultithread -n 12 prog.exe Launch prog.exe with 12 cores

srun --propagate=STACK,MEMLOCK prog.exe Launch prog.exe and propagate these two process limits

60

Interactive Jobs

 Use of interactive jobs should be kept to a minimum, and used only

for testing and development needs

 Interactive jobs should use the least amount of resources sufficient

for successful development or testing

 Do not request more than 2 nodes with an interactive job

 Do not request more than an hour of walltime when using the production

queues

 Whenever possible, submit only to the s_debug or express partitions

 These limitations are essentially rules of good citizenship, even though

they are not enforced by system configuration at this time

 Use of interactive jobs to launch programs with graphical interfaces is

not supported by RC

 Technically you can do it, but we will not spend time fixing issues or

problems with such use if and when you encounter problems

61

Interactive Jobs

 To launch an interactive job, you much first ssh into one of the

“internal login nodes” (raad2-int1 or raad2-int2). Here is a

sample sequence of commands…

fachaud74@raad2b:~> ssh raad2-int1

Last login: Thu Nov 23 11:01:47 2017 from nid00002

fachaud74@raad2-int1:~> srun --pty --qos sd -p s_debug -t 00:30:00 -n 2 --hint=nomultithread /bin/bash

fachaud74@nid00388:~> echo hello world!

hello world!

fachaud74@nid00388:~> exit

exit

fachaud74@raad2-int1:~> exit

logout

Connection to raad2-int1 closed.

fachaud74@raad2b:~>

 Above, we request 2 cores in the s_debug partition for a 30 minute session

62

The sacct Command

Command Example What it does…

sacct –u fachaud74 Produce a listing of user fachaud74’s past and current jobs

sacct -e Display a list of possible column headers usable with the

“–o” option (which customizes the sacct report)

sacct –u fachaud74 \

-o “JobID,JobName,CPUTime,Elapsed”
Display the job ID, job name, CPU time, and walltime

consumed by jobs from user fachaud74

sacct –S 2017-07-01 –u fachaud74 Display fachaud74’s job report starting from Jul 1, 2017

AllocCPUS AllocGRES AllocNodes AllocTRES

Account AssocID AveCPU CPUTime

Elapsed Eligible End ExitCode

GID Group JobID JobName

NCPUS NNodes NodeList Ntasks

Priority Partition QOS ReqCPUS

ReqGRES ReqMem ReqNodes ReqTRES

Reservation ReservationId Start State

Submit Suspended SystemCPU Timelimit

TotalCPU UID User UserCPU

 By default, sacct reports only on jobs beginning at 12am on the current day

 Use –S and –E to control the time period for which a report is required

 Some of the values sacct can report on (using the –o option):

63

Managing the User Environment

64

Application Environment

 On raad2, the user environment for most commercial applications is

managed by the “module” utility.

 Applications typically require environment variables to be set for

proper operation. Users could do this manually with a series of

relevant commands.

 However, with the module command, users need only to “load” or

“unload” pre-defined scripts (called modules) to automatically

perform (or undo) the required setup.

65

Common Module Commands

Command Description

module avail Show available modules

module list Show currently loaded modules

module load modulename Load a module

module unload modulename Unload a module

module switch module1 module2 Unload module1 and load module2 in its place

module help List the available module commands

module help modulename Display the help information for a module

module display modulename
Show specific changes that would be made by the

modulename script (without making them)

66

Module Help

module help

lists available module

command options

fachaud74@raad2b:~> module help

Modules Release 3.2.10.3 2012-12-21 (Copyright GNU GPL v2 1991):

Usage: module [switches] [subcommand] [subcommand-args]

Switches:

-H|--help this usage info

-V|--version modules version & configuration options

-f|--force force active dependency resolution

-t|--terse terse format avail and list format

-l|--long long format avail and list format

-h|--human readable format avail and list format

-v|--verbose enable verbose messages

-s|--silent disable verbose messages

-c|--create create caches for avail and apropos

-i|--icase case insensitive

-u|--userlvl <lvl> set user level to (nov[ice],exp[ert],adv[anced])

Available SubCommands and Args:

+ add|load modulefile [modulefile ...]

+ rm|unload modulefile [modulefile ...]

+ switch|swap [modulefile1] modulefile2

+ display|show modulefile [modulefile ...]

+ avail [modulefile [modulefile ...]]

+ use [-a|--append] dir [dir ...]

+ unuse dir [dir ...]

+ update

+ refresh

+ purge

+ list

+ clear

+ help [modulefile [modulefile ...]]

+ whatis [modulefile [modulefile ...]]

+ apropos|keyword string

+ initadd modulefile [modulefile ...]

+ initprepend modulefile [modulefile ...]

+ initrm modulefile [modulefile ...]

+ initswitch modulefile1 modulefile2

+ initlist

+ initclear

67

Module Help

module help modulename

shows help information specific to a

specific module

fachaud74@raad2b:~> module help gcc/5.2.0

----------- Module Specific Help for 'gcc/5.2.0' ------------------

gcc 5.2.0

=========

Release Date:

December 3, 2015

Purpose:

The gcc 5.2.0 release.

Product and OS Dependencies:

.

.

.

[output truncated for brevity]

.

.

.

68

Listing Available Modules

module avail lists modules available on this system

fachaud74@raad2b:~> module avail

--- /lustre/opt/modulefiles/tamuq ---

PrgEnv-intel/17.1.132/64bit gromacs/465-gnu intel/compiler/17.1.132/64bit python/279

astrometry/067 gromacs/465-intel intel/mkl/17.1.132/64bit singularity/2.2

cmake/330 gromacs/514 intel/mpi/17.1.132/64bit singularity/221

--- /lustre/sw/xc40ac/modulefiles ---

JDK/7u04 abaqus/2016 ansys/145 ansys/182 mathematica/901 matlab/r2016a

JDK/8u131 abaqus/613 ansys/162 lammps/17Nov16 matlab/r2014a openfoam/1612+

--- /opt/cray/craype/default/modulefiles --

craype-aarch64 craype-hugepages128K craype-hugepages8M craype-network-gemini

craype-abudhabi craype-hugepages128M craype-intel-knc craype-network-gige

craype-abudhabi-cu craype-hugepages16M craype-interlagos craype-network-infiniband

craype-accel-host craype-hugepages256M craype-interlagos-cu craype-network-none

craype-accel-nvidia20 craype-hugepages2M craype-istanbul craype-sandybridge

craype-accel-nvidia35 craype-hugepages32M craype-ivybridge craype-shanghai

craype-arm-thunderx craype-hugepages4M craype-mc12 craype-target-compute_node

craype-barcelona craype-hugepages512K craype-mc8 craype-target-local_host

craype-broadwell craype-hugepages512M craype-mic-knl craype-target-native

craype-haswell craype-hugepages64M craype-network-aries

--- /opt/cray/ari/modulefiles ---

alps/5.2.4-2.0502.9774.31.11.ari(default) pmi/5.0.10-1.0000.11050.0.0.ari(default)

configuration/1.0-1.0502.60535.1.2.ari(default) pmi/5.0.11

crash/7.1.0-1.0502.61934.1.1.ari pmi-lib/5.0.11

crash_utility/1.0-1.0502.62977.3.1.ari rca/1.0.0-2.0502.60530.1.62.ari(default)

dmapp/7.0.1-1.0502.11080.8.76.ari(default) sdb/1.1-1.0502.63652.4.25.ari(default)

dvs/2.5_0.9.0-1.0502.2188.1.116.ari(default) shared-root/1.0-1.0502.60523.1.31.ari(default)

gni-headers/4.0-1.0502.10859.7.8.ari(default) switch/1.0-1.0502.60522.1.61.ari(default)

hosts/1.0-1.0502.60484.1.61.ari(default) sysutils/1.0-1.0502.60492.1.1.ari(default)

krca/1.0.0-2.0502.63139.4.31.ari(default) udreg/2.3.2-1.0502.10518.2.17.ari(default)

lbcd/2.1-1.0502.60476.1.1.ari(default) ugni/6.0-1.0502.10863.8.29.ari(default)

logcb/1.0-1.0502.60472.1.1.ari(default) wlm_detect/1.0-1.0502.64649.2.1.ari(default)

nodehealth/5.1-1.0502.64995.8.11.ari(default) wlm_trans/1.0-1.0502.64650.3.9.ari(default)

nodestat/2.2-1.0502.60539.1.31.ari(default) xpmem/0.1-2.0502.64982.5.3.ari(default)

pdsh/2.26-1.0502.60659.2.1.ari(default)

69

Listing Loaded Modules

module list

lists the currently

loaded modules

fachaud74@raad2b:~> module list

Currently Loaded Modulefiles:

1) modules/3.2.10.3 8) udreg/2.3.2-1.0502.10518.2.17.ari 15) alps/5.2.4-2.0502.9774.31.11.ari

2) eswrap/1.3.3-1.020200.1278.0 9) ugni/6.0-1.0502.10863.8.29.ari 16) rca/1.0.0-2.0502.60530.1.62.ari

3) switch/1.0-1.0502.60522.1.61.ari 10) pmi/5.0.10-1.0000.11050.0.0.ari 17) atp/1.8.3

4) craype-network-aries 11) dmapp/7.0.1-1.0502.11080.8.76.ari 18) PrgEnv-cray/5.2.82

5) cce/8.4.3 12) gni-headers/4.0-1.0502.10859.7.8.ari 19) craype-haswell

6) craype/2.5.1 13) xpmem/0.1-2.0502.64982.5.3.ari 20) cray-mpich/7.3.1

7) cray-libsci/13.3.0 14) dvs/2.5_0.9.0-1.0502.2188.1.116.ari

fachaud74@raad2b:~>

70

Loading & Unloading Modules

fachaud74@raad2b:~> matlab -nojvm -nodisplay -nosplash

If 'matlab' is not a typo you can run the following command to lookup the package that contains the binary:

command-not-found matlab

-bash: matlab: command not found

fachaud74@raad2b:~> module load matlab/r2014a

fachaud74@raad2b:~> matlab -nojvm -nodisplay -nosplash

< M A T L A B (R) >

Copyright 1984-2014 The MathWorks, Inc.

R2014a (8.3.0.532) 64-bit (glnxa64)

February 11, 2014

To get started, type one of these: helpwin, helpdesk, or demo.

For product information, visit www.mathworks.com.

>> exit

fachaud74@raad2b:~> module unload matlab/r2014a

fachaud74@raad2b:~> module load matlab/r2016a

fachaud74@raad2b:~> matlab -nojvm -nodisplay -nosplash

< M A T L A B (R) >

Copyright 1984-2016 The MathWorks, Inc.

R2016a (9.0.0.341360) 64-bit (glnxa64)

February 11, 2016

For online documentation, see http://www.mathworks.com/support

For product information, visit www.mathworks.com.

>> exit

fachaud74@raad2b:~>

module load modulename

Applies changes needed for the system

to be able to locate & launch the

application referenced by modulename

module unload modulename

Reverses the changes applied by the

“module load modulename” command

Note that the load and unload sub-commands to module will only

produce output if an error is encountered.

71

Module Switching

module switch module1 module2

replaces loaded module module1 with new module module2

fachaud74@raad2b:~> module load gcc/5.2.0

fachaud74@raad2b:~> module list

Currently Loaded Modulefiles:

1) modules/3.2.10.3 8) udreg/2.3.2-1.0502.10518.2.17.ari 15) alps/5.2.4-2.0502.9774.31.11.ari

2) eswrap/1.3.3-1.020200.1278.0 9) ugni/6.0-1.0502.10863.8.29.ari 16) rca/1.0.0-2.0502.60530.1.62.ari

3) switch/1.0-1.0502.60522.1.61.ari 10) pmi/5.0.10-1.0000.11050.0.0.ari 17) atp/1.8.3

4) craype-network-aries 11) dmapp/7.0.1-1.0502.11080.8.76.ari 18) PrgEnv-cray/5.2.82

5) cce/8.4.3 12) gni-headers/4.0-1.0502.10859.7.8.ari 19) craype-haswell

6) craype/2.5.1 13) xpmem/0.1-2.0502.64982.5.3.ari 20) cray-mpich/7.3.1

7) cray-libsci/13.3.0 14) dvs/2.5_0.9.0-1.0502.2188.1.116.ari 21) gcc/5.2.0

fachaud74@raad2b:~> which gcc

/opt/gcc/5.2.0/bin/gcc

fachaud74@raad2b:~> module sw gcc/5.2.0 gcc/6.3.0

fachaud74@raad2b:~> module list

Currently Loaded Modulefiles:

1) modules/3.2.10.3 8) udreg/2.3.2-1.0502.10518.2.17.ari 15) alps/5.2.4-2.0502.9774.31.11.ari

2) eswrap/1.3.3-1.020200.1278.0 9) ugni/6.0-1.0502.10863.8.29.ari 16) rca/1.0.0-2.0502.60530.1.62.ari

3) switch/1.0-1.0502.60522.1.61.ari 10) pmi/5.0.10-1.0000.11050.0.0.ari 17) atp/1.8.3

4) craype-network-aries 11) dmapp/7.0.1-1.0502.11080.8.76.ari 18) PrgEnv-cray/5.2.82

5) cce/8.4.3 12) gni-headers/4.0-1.0502.10859.7.8.ari 19) craype-haswell

6) craype/2.5.1 13) xpmem/0.1-2.0502.64982.5.3.ari 20) cray-mpich/7.3.1

7) cray-libsci/13.3.0 14) dvs/2.5_0.9.0-1.0502.2188.1.116.ari 21) gcc/6.3.0

fachaud74@raad2b:~> which gcc

/opt/gcc/6.3.0/bin/gcc

fachaud74@raad2b:~>

72

Module: How it Works

Among other things, the module command adds and removes values to certain environment

variables such as PATH, MANPATH, and LD_LIBRARY_PATH to enable the shell to locate various

components of an application.

fachaud74@raad2b:~> echo $PATH

/opt/cray/mpt/7.3.1/gni/bin:/opt/cray/rca/1.0.0-2.0502.60530.1.62.ari/bin:/opt/cray/alps/5.2.4-

2.0502.9774.31.11.ari/sbin:/opt/cray/dvs/2.5_0.9.0-1.0502.2188.1.116.ari/bin:/opt/cray/xpmem/0.1-

2.0502.64982.5.3.ari/bin:/opt/cray/pmi/5.0.10-1.0000.11050.0.0.ari/bin:/opt/cray/ugni/6.0-

1.0502.10863.8.29.ari/bin:/opt/cray/udreg/2.3.2-

1.0502.10518.2.17.ari/bin:/opt/cray/craype/2.5.1/bin:/opt/cray/cce/8.4.3/cray-binutils/x86_64-unknown-linux-

gnu/bin:/opt/cray/cce/8.4.3/craylibs/x86-

64/bin:/opt/cray/cce/8.4.3/cftn/bin:/opt/cray/cce/8.4.3/CC/bin:/opt/cray/switch/1.0-

1.0502.60522.1.61.ari/bin:/opt/cray/eslogin/eswrap/1.3.3-

1.020200.1278.0/bin:/opt/modules/3.2.10.3/bin:/lustre/home/fachaud74/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:

/usr/X11R6/bin:/usr/games:/usr/lib/mit/bin:/usr/lib/mit/sbin:/sbin:/usr/sbin:.:/usr/lib/qt3/bin:/opt/cray/bin

fachaud74@raad2b:~> module load gcc/6.3.0

fachaud74@raad2b:~> echo $PATH

/opt/gcc/6.3.0/bin:/opt/cray/mpt/7.3.1/gni/bin:/opt/cray/rca/1.0.0-2.0502.60530.1.62.ari/bin:/opt/cray/alps/5.2.4-

2.0502.9774.31.11.ari/sbin:/opt/cray/dvs/2.5_0.9.0-1.0502.2188.1.116.ari/bin:/opt/cray/xpmem/0.1-

2.0502.64982.5.3.ari/bin:/opt/cray/pmi/5.0.10-1.0000.11050.0.0.ari/bin:/opt/cray/ugni/6.0-

1.0502.10863.8.29.ari/bin:/opt/cray/udreg/2.3.2-

1.0502.10518.2.17.ari/bin:/opt/cray/craype/2.5.1/bin:/opt/cray/cce/8.4.3/cray-binutils/x86_64-unknown-linux-

gnu/bin:/opt/cray/cce/8.4.3/craylibs/x86-

64/bin:/opt/cray/cce/8.4.3/cftn/bin:/opt/cray/cce/8.4.3/CC/bin:/opt/cray/switch/1.0-

1.0502.60522.1.61.ari/bin:/opt/cray/eslogin/eswrap/1.3.3-

1.020200.1278.0/bin:/opt/modules/3.2.10.3/bin:/lustre/home/fachaud74/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:

/usr/X11R6/bin:/usr/games:/usr/lib/mit/bin:/usr/lib/mit/sbin:/sbin:/usr/sbin:.:/usr/lib/qt3/bin:/opt/cray/bin

fachaud74@raad2b:~>

73

SLURM by Example

74

Examples Directory

 /lustre/share/examples/slurm-tutorial

 01_helloworld

 02_multi_helloworld

 03_mpi_matmult

 04_multi_sruns

 05_interactive_job

 06_mpi_matmult_multinode

 07_tidbits

 08_openmp

 09_matlab

 10_ansys

75

SLURM Example Files

 README Text file with instructions relevant to the example

 *.c C source code files

 *.f Fortran source code files

 *.exe Executable files

 *.slurm SLURM job scripts

