
Mustafa Arif

mustafa.arif@qatar.tamu.edu

Texas A&M University at Qatar

INTRODUCTION TO LINUX CONTAINERS
SESSION 01

Session 01: What we are going to learn today?

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Documentation Link

https://rc-docs.qatar.tamu.edu/index.php/Linux_containers

Training guidelines

Each attendee must have received login credentials for a workstation.

Must be connected to TAMUQ VPN to login to workstation.

By default, microphone is muted for everyone. If you have any questions,
please raise your hand via Zoom and we will take the question.

During the training we will have multiple hands on exercises and anonymous
surveys.

What is a Linux
Container?

 Packages all the applications/binaries
and dependencies into a single file
called “Container Image”.

 Container image consists of custom
binaries and Just Enough Operating
System (JeOS).

 More efficent than full (hardware-
level) virtualization.

 Offers portability and reproducibility.

 Ensures your application won’t break
when you port it to a new
environment.

What its good for?

 Package an analysis pipeline so that it runs on your laptop, in the cloud, and
in a high-performance computing (HPC) environment to produce the same
result.

 Publish a paper and include a link to a container with all of the data and
software that you used so that others can easily reproduce your results.

 Install and run an application that requires a complicated stack of
dependencies with a few keystrokes.

 Create a pipeline or complex workflow where each individual program is
meant to run on a different operating system.

Difference between Virtual Machines and Containers

Virtual Machines
- Hardware level virtualization.
- Complete operating system right down to
the kernel.
- Slow and resource hungry. Every time you
launch a VM, it must bring up an entirely
new OS.

Containers
- OS Level Virtualization
- Much faster and lighter than VMs.
- Start and stop quickly and are suitable for
running single apps.

Linux OS Architecture

CPU RAM I/O GPU Other
HardwarePhysical Hardware Layer

Linux Kernel

Root file System /

Applications

Libraries System Daemons Shells Tools

Linux OS with Virtual Machines

CPU RAM I/O GPU Other
HardwarePhysical Hardware Layer

Linux Kernel

Root file System /

Application

Application

Application

Application

Hypervisor (KVM, ESXi)

Virtual Hardware Layer

Linux Kernel

Root file System /

Application

Application

Application

Application

Linux Virtual Machine

Linux OS with Singularity Containers

CPU RAM I/O GPU Other
HardwarePhysical Hardware Layer

Linux Kernel

Root file System /

Application

Application

Application

Application

Singularity Launcher

Singularity Container(s)

App 1

bin/libs

App 2

bin/libs

App 3

bin/libs

Singularity containers run as a user and
shares host kernel

Common container frameworks

• Most commonly used container framework.
• Not built for HPC, users can escalate sudo privileges inside the

container.
• Shines for DevOPs teams providing cloud-native micro services.

Docker

• Linux containers for HPC, developed at NERSC.
• Uses Docker functionality but makes it safe in shared HPC

systems.
• Image gateway used to convert Docker images before use.

Shifter

• Not based on Docker but can directly import/run Docker container
images.

• HPC oriented and designed to run in shared environments.
• A user inside a Singularity container is the same user as outside the

container.

Singularity

Introduction to
Singularity
https://sylabs.io/

 Rleatively new container framework invented by Greg
Kurtzer at Lawrence Berkley National labs.

 Developed with focus on security, scientific software
and HPC systems in mind.

 Singularity assumes that each application will have its
own container.

 You require a build system where you have root
permissions to build a container.

 The built container is then ported to a production
system where you may or may not be a root user. E.g.
HPC System.

 Doesn’t requires any application daemon running on a
system.

 Singularity container can be distributed as a file
(singularity image file).

 Singularity exectuable can be compiled from source
code.

 Can work in HPC systems where shared file system is
present. Users can not access/modify data which
doesn’t belongs to them.

 No changes required on HPC system or in a resource
scheduler.

Why
Singularity?

Session 01: Install singularity on personal
workstation

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Install Singularity on personal workstation

 Your workstation runs Linux distro

 Compile Singularity from source code.

 Guide: https://rc-docs.qatar.tamu.edu/index.php/Linux_containers#Linux

 Your workstation runs Windows

 Use Sylabs provided Virtual machine in combination with Vagrant and Virtual box

 Guide: https://rc-docs.qatar.tamu.edu/index.php/Linux_containers#Windows

 Your workstation runs Mac OS

 Use Sylabs provided Virtual machine in combination with Vagrant and Virtual box

 Guide: https://rc-docs.qatar.tamu.edu/index.php/Linux_containers#MAC_OS

Lets connect to remote workstation

ssh student@ip_addr

student@ws01:~$

In your local MobaXterm or Mac terminal, login to remote workstation using
supplied credentials

student@ws01:~# singularity version

Verify Singularity version available in your workstation

singularity --help

Explore singularity help

student@ws01:~# singularity --help

singularity help <command> [<subcommand>]

Examples:

student@ws01:~# singularity help shell

Session 01: Download pre-built containers

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Where to find pre-built containers?

Pre-built containers can be found on various online repositories

Singularity Container
Library

Docker Hub

Quay.io

Nvidia GPU Cloud

BioContainers

Developed and maintained by Sylabs
https://cloud.sylabs.io/library

Developed and maintained by Docker
https://hub.docker.com/

Developed and maintained by Red Hat
https://quay.io/

Developed and maintained by NVIDIA
https://ngc.nvidia.com/

Develped and maintained by the Bioconda group
https://biocontainers.pro/

We will explore
in todays session

We will explore
in Session 02

Singularity ‘pull’ command to download pre-built
containers

Explore Help on Singularity Pull Command

student@ws01:~# singularity help pull

Examples:

 From Sylabs cloud library

 $ singularity pull alpine.sif library://alpine:latest

 From Docker

 $ singularity pull tensorflow.sif docker://tensorflow/tensorflow:latest

singularity pull image.sif source://image:tag

Use singularity “pull” command to download image from remote repository

Singularity Executable Subcommand Desired Name
of Image

Remote Repo
Name

Name of
remote Image

Version
required

Explore
remote
Repos

•https://hub.docker.com

Docker Hub

•https://cloud.sylabs.io

Singularity
Container Library

Hands-On Exercise 01

Download Fedora 28 from Docker Hub and store image locally as
“Fedora_28.sif”

Download Ubuntu 18.04 from Singularity Library and store image
locally as “Ubuntu_1804.sif”

Task 01

Task 02

Hands-On Exercise 01: Solution

singularity pull ubuntu_1804.sif library://ubuntu:18.04

singularity pull fedora_28.sif docker://fedora:28

Task 01

Task 02

Session 01: How to interact with containers?

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Interact with Containers: Shell

Explore Help on Singularity Shell Command

student@ws01:~# singularity help shell

Examples:

 $ singularity shell /tmp/Debian.sif

 Singularity/Debian.sif> pwd

 /home/gmk/test

 Singularity/Debian.sif> exit

singularity shell image.sif

Use singularity “shell” command to start interactive shell inside the container

Singularity Executable Target Image to EnterSub command

Interact with Containers: Exec

Explore Help on Singularity Exec Command

student@ws01:~# singularity help exec

Examples:

 $ singularity exec /tmp/debian.sif cat /etc/debian_version

 $ singularity exec /tmp/debian.sif python ./hello_world.py

singularity exec image.sif command

Use singularity “exec” subcommand to execute any command inside the container

Singularity Executable Target ImageSub command Command to issue

Hands-On Exercise 02

Start interactive session inside container Fedora_28.sif which was already downloaded. Issue
following command. Note the output of the command for the upcoming assessment.

cat /etc/fedora-release

Use singularity exec to execute below command in ubuntu_1804.sif container which was
downloaded earlier.

cat /etc/lsb-release

Task 01

Task 02

Use singularity exec to execute below command in ubuntu_1804.sif container which was
downloaded earlier.

python3 --version

Task 03

Hands-On Exercise 02: Solution

student@ws01:~# singularity shell fedora_28.sif

Singularity> cat /etc/fedora-release

Fedora release 28 (Twenty Eight)

Singularity> exit

student@ws01:~# singularity exec ubuntu_1804.sif cat /etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=18.04

DISTRIB_CODENAME=bionic

DISTRIB_DESCRIPTION="Ubuntu 18.04 LTS"

Task 01

Task 02

Task 03

student@ws01:~# singularity exec ubuntu_1804.sif python --version

/.singularity.d/actions/exec: 21: exec: python3: not found

Session 01: Container definition files

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Building
containers
using
Singularity
definition files

Singularity definition files

 Set of blueprints explaining how to build a custom container.

 Includes specifics of which base container to use and what
should be installed inside the container at the build time.

 Divided into two parts:
 Header

 Header describes the core operating system to build within the container.

 Sections

 Each section is defined by a % character followed by name of a section.

 Each section performs specific tasks. Eg. File copy, Setting environment
variables, Post build tasks etc.

More information: https://sylabs.io/guides/3.5/user-guide/definition_files.html

Lets have a look at a sample definition file

Bootstrap: library
From: ubuntu:18.04

%environment
export MYVAR=“This is a test Container”

%post
apt-get install -y vim

%files
/file1 /opt

%labels
Author user@email.com
Version v0.0.1

%help
This is my test application.

Sample definition file for Singularity container build (myapp.def)

Build a container with definition file

Explore Help on Singularity Build Command

student@ws01:~# singularity help build

singularity build myapp.sif myapp.def

Use singularity “build” command to build container from definition file

Singularity Executable Image nameSub command Definition file

Hands-On Exercise 03

 In last exercise, when we issued “python3 --version” in ubuntu_1804.sif container, we
couldn’t find python3 installation inside the container.

 Now since we know how to write a definition file to modify container contents at build
time. Lets write a definition file called “myapp.def” which will install python3 inside
the container.

 Build container using this definition file.

 Use either singularity shell or exec to verify that the new container has python3
installed.

Remember: Building container requires sudo privileges. ‘student’ account has sudo
privileges.

Task 01

Hands-On Exercise 03: Solution

Bootstrap: library
From: ubuntu:18.04

%post
apt-get install -y python3

student@ws01:~$ sudo singularity build myapp.sif myapp.def

myapp.def

Build container from definition file

student@ws01:~$ singularity exec myapp.sif python3 --version

Python 3.6.5

Verify if python3 is installed inside the container

Container
development
cycle

Steps in container development cycle

• Create a writable container (called a sandbox)Sandbox
• Start interactive session via SHELL in the container

with --writable optionConnect
• Install any required packages/applications/librariesModify
• Record the changes in a separate file called as

“definition file”Record
• Rebuild the container from the definition file and

verify if the resultant container works as expected.Verify
• Rebuild the container as prodcution ready read-only

container (.sif) image.Production

Session 01: What we are going to learn today?

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Writable
containers

 A container can be modified if it
was build as a “sandbox”.

 A writable container is called as a
“sandbox” container.

 Sandbox containers are meant for
development and testing only.
They should never be used in a
production environment.

Building a sandbox container

singularity build --sandbox myapp myapp.def

Use singularity “build” command with --sandbox flag and use definition file

Singularity Executable Dir nameSub command Sub command Definition file

Singularity Executable Sub command Sub command

singularity build --sandbox myapp source://image:tag

Name of
remote Image

Version
required

Remote Repo
Name

Use singularity “build” command with --sandbox flag and use remote repo

Dir name

Interacting with sandbox container

 When you build a container with --sandbox flag, the resultant container is a
directory instead of singularity image file (.sif).

 You can interact with this sandbox container just like you did with singularity
image file.

 singularity shell myapp

 singularity exec myapp cat /etc/lsb-release

 By default when you do a shell or exec inside a sandbox container, you are not
allowed to make any changes.

 You will need to add --writable flag to make changes inside the sandbox
container.

Making changes to sandbox container
Use singularity shell with --writable flag

singularity shell --writable sandboxdir

Singularity Executable Sub command Sub command Sandbox Container

Use singularity exec with --writable flag

singularity exec --writable sandboxdir command

Singularity Executable Sub command Sub command Sandbox Container Command

Convert sandbox container to .sif

Use singularity build to convert sandbox container to singularity image file

singularity build myapp.sif myapp

Singularity Executable Output ImageSub command Sandbox
container

Hands-On Exercise 04

 Your manager has given you a source code which has to be run on HPC system. But the HPC
admin has informed you that the required dependencies can not be met on HPC system due to
various technical reasons. Since you attended Introduction to Linux container course, you can
easily solve this problem by installing all the requirements in a container and then port
container to HPC system.

 HPC Admin told you that he can help you port the container on HPC system, but he wants you
to share container build definition file, so he is aware of what is happening inside the
container.

 App requirements are below;

 Base OS: Centos 8

 Libraries: fftw-libs, fftw-devel, openmpi.x86_64, openmpi-devel.x86_64, boost

 Packages: Python3, vim

 Deliverables
 Definition file which can reproduce exact same container.

 What will be your approach to build a container?

Task

Hands-On
Exercise 04:
Approach

• Build a sandbox container based on Centos 8.

Step 01

• Do an interactive SHELL to sandbox container and install requirements.
• While you are installing requirements, make sure to take a note of all the

actions you are performing inside the container.

Step 02

• Translate those requirements into a definition file

Step 03

• Rebuild container with definition file to make sure that definition file is
working as expected.

Step 04

• Convert the sandbox container to singularity image file (.sif) and port it to
the HPC System.

Step 05

Session 01: What we are going to learn today?

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

How to modify/access files of host
system from within the container?

 When you launch a container, your home directory and few other directories are
mounted inside the container by default.

 $HOME, /tmp, /proc, /sys, /dev

 It is also possible to mount other host directories inside the container using --bind
option or the environmental variable $SINGULARITY_BINDPATH

 You can bind directories as read only or read write with bind options.

More information: https://sylabs.io/guides/3.5/user-guide/bind_paths_and_mounts.html

Examples

 On Host system, create a directory

$ mkdir /data

$ echo “This file is on host system” >> /data/file.info

 Bind host directory inside a container at /mnt path

$ singularity exec --bind /data:/mnt myapp.sif cat /mnt/file.info

This file is on host system

 You can also bind multiple directories in single command with this syntax:

$ singularity shell --bind /data1:/mnt1,/data2/mnt2 myapp.sif

More information: https://sylabs.io/guides/3.5/user-guide/bind_paths_and_mounts.html

Session 01: What we are going to learn today?

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02
Port containers

to HPC/GPU
Cluster

Session 02:
Porting
production
ready
containers to
HPC or GPU
Cluster

Remote building a container

Porting container to raad2

Container with SLURM in batch job

Packaging MPI application in container

Containers with Nvidia GPUs

Running containers from Nvidia GPU cloud

	Slide Number 1
	Session 01: What we are going to learn today?
	Documentation Link
	Training guidelines
	What is a Linux Container?
	What its good for?
	Difference between Virtual Machines and Containers
	Linux OS Architecture
	Linux OS with Virtual Machines
	Linux OS with Singularity Containers
	Common container frameworks
	Introduction to Singularity�https://sylabs.io/
	Why Singularity?
	Session 01: Install singularity on personal workstation
	Install Singularity on personal workstation
	Lets connect to remote workstation
	singularity --help
	Session 01: Download pre-built containers
	Where to find pre-built containers?
	Singularity ‘pull’ command to download pre-built containers
	Explore remote�Repos
	Hands-On Exercise 01
	Hands-On Exercise 01: Solution
	Session 01: How to interact with containers?
	Interact with Containers: Shell
	Interact with Containers: Exec
	Hands-On Exercise 02
	Hands-On Exercise 02: Solution
	Session 01: Container definition files
	Building containers using Singularity definition files
	Singularity definition files
	Lets have a look at a sample definition file
	Build a container with definition file
	Hands-On Exercise 03
	Hands-On Exercise 03: Solution
	Container development cycle
	Steps in container development cycle
	Session 01: What we are going to learn today?
	Writable containers
	Building a sandbox container
	Interacting with sandbox container
	Making changes to sandbox container
	Convert sandbox container to .sif
	Hands-On Exercise 04
	Hands-On Exercise 04: Approach
	Session 01: What we are going to learn today?
	How to modify/access files of host system from within the container?
	Examples
	Session 01: What we are going to learn today?
	Session 02: Porting production ready containers to HPC or GPU Cluster

