
Mustafa Arif

mustafa.arif@qatar.tamu.edu

Texas A&M University at Qatar

INTRODUCTION TO LINUX CONTAINERS FOR HPC
SESSION 02

Session 01: What we have learned?

Containers
Introduction

Install
Singularity on
local System

Learn how to
download pre-
built container

How to
interact with
containers?

Container
definition files

Build writable
containers

Bind mounts in
the container

Session 02/03
Port containers

to HPC/GPU
Cluster

Session 02: What we are going to learn today?

Type of HPC
workloads

Create Python
Container and
port to HPC

Build MPI Base
container and
port it to HPC

Build Gromacs
and port it to

HPC
Remote BuildBest practices

Session 03
Port containers
to GPU Cluster

Session 02
Port containers
to HPC Cluster

Documentation Link

https://rc-docs.qatar.tamu.edu/index.php/Linux_containers

Training guidelines

Dev instances for Singularity are provided in cloud.

Attendees should have access to HPC system “raad2” for Session 02.

By default, microphone is muted for everyone. If you have any questions,
please raise your hand via Zoom and we will take the question.

During the training we will have multiple hands on exercises and anonymous
surveys.

Lets connect to remote workstation

ssh -p <port> student@x.cloudapp.azure.com

student@host:~$

In your local MobaXterm or Mac terminal, login to remote workstation

student@host:~# singularity version

Verify Singularity version available in your workstation

Connect to
raad2

Connect to raad2

ssh user@raad2.qatar.tamu.edu

student@host:~$

In your local MobaXterm or Mac terminal, login to raad2

user@raad2a:~# git clone https://github.com/mustafaarif/workshops.git

Clone git repo for this tutorial

Session 01:
Recap

• Offers portability, reproducibility.

• More efficient than hardware-level virtualization.

• Light weight and shares kernel with host operating system.

• Common container frameworks are Docker, Shifter and Singularity.

• Shifter is more suited for HPC environments.

Introduction to Linux Containers

• https://rc-docs.qatar.tamu.edu/index.php/Linux_containers#Installation

Installing Singularity on local workstation

Session 01: Recap

 How to download pre-built containers?

 From Docker

 singularity pull ubuntu_1804.sif docker://ubuntu:18.04

 From Singularity Library

 singularity pull ubuntu_1804.sif library://ubuntu:18.04

 How to interact with the containers?

 SHELL

 singularity shell ubuntu_1804.sif

 Execute Command inside container

 singularity exec ubuntu_1804.sif cat /etc/lsb-release

Session 01: Recap

 Singularity definition files

 Blueprint of a container.

 Can reproduce exact same software stack.

 singularity build image.sif blueprint.def

 Writable containers

 singularity build --sandbox ubuntu docker://ubuntu:18.04

 Bind-Mount in the containers

 Allows you to mount host directories inside the container.

 singularity shell --bind /dir_out:/dir_in myapp.sif cat /dir_in/myfile

Bootstrap: library
From: ubuntu:18.04

%environment
 export PY_VER=“3”

%post
 apt-get install python3

%labels
 Author mustafa.arif@qatar.tamu.edu
 Version v0.0.1

%help
 This container is built on top of Ubuntu 18.04 and have
python3 installed

HPC Workloads

• Runs on a single core and is mutually exclusive of other tasks.
• A single node on raad2 can host up to 24 serial jobs of same or multiple users.

Serial workloads

• Requires more than a single core, but computation is still bound to single node.

Multi-threaded workloads

• Problem is divided into small chunks and distributed over various nodes.
• Communication across nodes happens via MPI or specific methods.
• Most of the scientific codes have MPI Support.

MPI Applications

Generic workflow for porting applications
to raad2

 Gather requirements for your application

 Is it a serial or multi-node application?

 Does vendor/author suggest any specific base operating system? Ubuntu/Centos/Fedora etc.

 On development workstation (with sudo access), create sandbox container with base OS.

 Use trusted sources to download the base container. E.g. Docker/Sylabs

 Install prerequisites inside sandbox container.

 Download/Copy source of the target application inside the container and perform the build.

 Test your application before converting into .sif image.

 Copy the final .sif image to raad2.

 Verify application working with SLURM scheduler in interactive or batch mode.

MPI Support with Singularity

 Message Passing Interface (MPI) is extensively used in HPC to communicate across
various nodes.

 There are two main open-source implementations of MPI;
 MPICH

 OpenMPI

 Singularity supports both implementations and offers two different ways to use
MPI with HPC system.
 Hybrid Model

 MPI is installed inside the container.

 Bind Model
 MPI installation on host system is mounted inside the container at run time.

 More information
 https://sylabs.io/guides/3.5/user-guide/mpi.html

Case Study 01: Porting Python container
to raad2

 Requirements

 Base OS: Ubuntu

 Python Version: 3.8.2

 Python packages: Tensorflow

 OS packages: wget, git, vim, nano

 Deliverables

 Singularity Image file

 Definition file

Case Study 02: Build a base MPI
container with MPICH

 Requirements

 Base OS: Ubuntu

 MPICH Ver: 3.3

 Deliverables

 Singularity Image file

 Definition file

Case Study 03:
Build Gromacs
with MPI
Support and
port it to
raad2

 GROMACS is a versatile package to perform molecular
dynamics, i.e. simulate the Newtonian equations of
motion for systems with hundreds to millions of
particles.

 This package is actively used by many in raad2
community.

 Package updates are released often, and each new
release offers better performance features.

 It is difficult for admins to provide latest package on
HPC system regularly.

 Latest releases often depends on various other updated
packages. Compiling all the dependencies is very time
consuming and it can take few days to weeks.

Case Study 03: Build Gromacs with MPI
Support and port it to raad2

 Build Approach 01: Identify if there is any repo which provides latest builds of
Gromacs containers. You can download that container hoping that it is
optimized to your needs.

 Build Approach 02: If you want to build from scratch;

 Install required pre-reqs. A good start is to install at least build-essential, cmake
and gfortran on ubuntu.

 Install mpich (raad2 supports mpich, so its recommended to use mpich)

 Build Gromacs.

 Copy container to raad2 via scp

 Make container act as a native application on raad2.

 Launch as batch job with SLURM.

Remote
building a
container

 Allows users to perform a remote build of a container without
requiring sudo privileges.

 The remote build happens in cloud at cloud.sylabs.com

 You will need to create an account on https://cloud.sylabs.com

 Remote builder accepts definition file only.

 singularity build --remote myapp.sif myapp.def

Let's remote
build a
container

Best
Practices

Publish Publish your definition files on git or other repos so that others
can benefit from your work.

Maintain Always maintain a definition file of current build.

Avoid Do not install unneccessary packages in the container. Less is
better.

Clean Clean-up the container before converting to .sif file.

Inspect Always inspect ‘runscript’ before using container which was not
built by you or trusted source.

Navigating
documentation

https://sylabs.io/guides/3.5/user-guide/

Questions?

	Slide Number 1
	Session 01: What we have learned?
	Session 02: What we are going to learn today?
	Documentation Link
	Training guidelines
	Lets connect to remote workstation
	Connect to raad2
	Connect to raad2
	Session 01: Recap
	Session 01: Recap
	Session 01: Recap
	HPC Workloads
	Generic workflow for porting applications to raad2
	MPI Support with Singularity
	Case Study 01: Porting Python container to raad2
	Case Study 02: Build a base MPI container with MPICH
	Case Study 03: Build Gromacs with MPI Support and port it to raad2
	Case Study 03: Build Gromacs with MPI Support and port it to raad2
	Remote building a container
	Let's remote build a container
	Best Practices
	Navigating documentation
	Questions?

