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1 About XC™ Series Urika®-XC Analytic Applications
Guide (S-2589) Rev A

The XC™ Series Urika®-XC Analytic Applications Guide, S-2589 Rev A provides information about the features
and analytic software components of Urika-XC software, as well instructions for using the analytic components.

Publication Title Date Release

XC™ Series Urika®-XC Analytic
Applications Guide (S-2589)

August, 2017 1.0UP00 release

XC™ Series Urika®-XC Analytic
Applications Guide (S-2589)

December, 2017 1.1UP00 release

XC™ Series Urika®-XC Analytic
Applications Guide (S-2589) Rev A

January, 2018 1.1UP00 release. Th revision
contains minor corrections to the
usage of the run_training
command.

XC™ Series Urika®-XC Analytic
Applications Guide (S-2589) Rev B

January, 2018 1.1UP00 release. Th revision
contains additional information
about the supported version of Dask
Distributed.

Scope and Audience
This publication is written for users and administrators of Urika-XC.

Record of Revision
New and updated content since the 1.0UP00 release is listed below.

● New content: This publication version contains new information related to:

○ using Jupyter NoteBooks

○ executing commands inside a Shifter container using the run_training command.

○ setting up SSH tunnels for UIs.

○ setting up SSH between OSA container nodes.

○ visualizing statistics using TensorBoard.

○ running TensorFlow on XC system GPUs.

○ creating new Conda environments with TensorFlow.

○ training Inception-V3 using GRPC distributed TensorFlow.

● Updated content:

About XC™ Series Urika®-XC Analytic Applications Guide (S-2589) Rev A

S2589   3



○ Updates to software component versions.

○ Updates to the list of Urika-XC features.

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, and other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a GUI Window, GUI element, cascading menu (Ctrl→Alt→Delete), or
key strokes (press Enter).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). 

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, and YARCDATA. The following are trademarks of Cray Inc.:  APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE.  The following system family marks, and associated model number marks, are trademarks of Cray
Inc.:  CS, CX, XC, XE, XK, XMT, and XT.  The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.  Other trademarks used in
this document are the property of their respective owners.
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2 About Urika-XC
Cray Urika-XC is a high performance big data software stack, which is optimized for multiple work-flows and runs
on the Cray XC series systems. It features a comprehensive analytics software stack for capturing and organizing
a wide variety of data types from different sources and for executing a variety of analytic jobs on them. In addition,
the Urika-XC software stack features components for performing machine and deep learning tasks.

Urika-XC consists of two components, Open Source Analytics (OSA) and Cray Graph Engine (CGE). They may
be installed separately or together. OSA is based on images that run inside Shifter containers, while CGE is a
user-level binary application.

Urika-XC software can be used with CLE 6.0 UP02 and later CLE releases.

Features and Analytic Components
● Support for the Multiple Workload Managers - Urika-XC supports a number of workload managers,

including Slurm, Moab Torque and PBS Pro.

● Support for Jupyter Notebook - Urika-XC supports Jupyter Notebook with the Jupyter Notebook server,
which is a web application that enables creating and sharing documents that contain live code, equations,
visualizations, and explanatory text. For more information, visit http://jupyter.org

● Support for GPUs - Urika-XC enables running TensorFlow on Xeon and Nvidia GPU nodes.

● Support for accessing DataWarp Files - Urika-XC enables users to access files in Cray DataWarp, which
provides an intermediate layer of high bandwidth, file-based storage to applications running on compute
nodes. For more information, refer S-2558, XC™ Series DataWarp™ User Guide

● Cray Graph Engine (CGE) - CGE is a highly optimized and scalable graph analytics application software,
which is designed for high-speed processing of interconnected data. On Urika-XC, CGE jobs are scheduled
like user applications, which is similar to the way other HPC applications are scheduled. For more information,
refer to Cray® Graph Engine User Guide

● Open Source Analytics (OSA) images - Urika-XC provides OSA images that run inside Shifter containers. 
Software provided in these images includes:

○ Apache™ Spark™ - Spark is a general data processing framework that simplifies developing big data
applications. It provides the means for executing batch, streaming, and interactive analytics jobs. In
addition to the core Spark components, Urika-XC ships with a number of Spark ecosystem components.
For more information, visit https://spark.apache.org

○ Anaconda® Python and R - Anaconda is a distribution of the Python and R programming languages for
large-scale data processing, predictive analytics, and scientific computing. It aims at simplifying package
management and deployment. For more information, visit https://anaconda.org

○ Dask and Dask Distributed - Dask is a parallel programming library that combines with the Numeric
Python ecosystem to provide parallel arrays, data-frames, machine learning, and custom algorithms. For
more information, visit http://dask.pydata.org

About Urika-XC
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○ Intel® BigDL - BigDL is a distributed deep learning library for Spark that can run directly on top of existing
Spark or Apache Hadoop clusters. Deep learning applications can be written as Scala or Python
programs. For more information, visit https://www.intel.com

○ TensorFlow™ and TensorBoard - TensorFlow is a software library for dataflow programming across a
range of tasks. It is a Math library, which is also used for machine learning applications, such as neural
networks. TensorFlow provides a utility called TensorBoard that can display a picture of the computational
graph. For more information, visit https://www.tensorflow.org
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3 About Open Source Analytics (OSA) Images
Urika-XC OSA images contain everything required for running Spark, Dask Distributed, Anaconda Python,
TensorFlow BigDL programs. The start_analytics script creates and runs Shifter containers on allocated
nodes of the XC system using OSA images.

Only OSA images an CGE can be used as part of Urika-XC software. Downloading additional images and
integrating them into the Urika-XC software is not supported.

For more information, see the start_analytics man page.

3.1 Resource Allocation
Two types of resource allocation are supported on Urika-XC.

Resource Allocation for CGE
Resource allocation for CGE is described in About the Cray Graph Engine (CGE) on page 20 and on the CGE
man pages

Resource Allocation for OSA
Urika-XC software can be run on the Slurm, Moab Torque and PBS Pro workload managers. Before an analytics
cluster can be started, the desired number of nodes needs to be allocated using the workload manager. If N
number of nodes are allocated, one of them will be allocated as a master and one of them will be allocated as an
interactive node. In addition, if the system uses:

● Moab Torque, N-1 worker containers will be launched, because the interactive container is always launched
on the login node with Moab Torque.

● Slurm, N-2 worker containers will be launched.

● PBS Pro, N-1 worker containers will be launched.

For example, to run a cluster with 16 worker nodes, execute the following command:

● Example for Slurm:

$ salloc -N 18 start_analytics
● Example for Moab Torque:

$ qsub -I -l nodes=17
$ start_analytics

● Example for PBS Pro:
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$ qsub -I -l nodes=17
$ start_analytics

3.2 Shifter Usage
Shifter allows users to provide a completely pre-packaged analytics environment with all the necessary
dependencies. Users acquire an allocation of nodes from their systems workload manager/scheduler, and the
Urika-XC start up script creates a cluster of Shifter containers on the allocated nodes, which are configured to talk
to each other. Everything except for CGE runs in Shifter containers, i.e., all of the Open Source Analytics (OSA)
components shipped with the Urika-XC. Shifter also provides the per-node cache functionality that creates a loop
back mounted file system on every node. This provides efficient emulation of local storage for frameworks like
Spark that require it.

3.3 Start an Analytics Cluster and Run OSA Jobs Using the
start_analytics Command

The start_analytics command starts an analytics cluster, which can be used to run Open Source Analytics
(OSA) components, including Spark, Anaconda, Dask, BigDL, TensorFlow, TensorBoard and Jupyter Notebook. It
can be considered as an entry point to the OSA components.

The start_analytics command also accepts options that enable users to:

● Run commands in the analytics cluster and exit, instead of opening an interactive shell.

● Start a Dask distributed cluster.

● Launch Dask distributed with the specified memory limit, desired number of workers and/or cores.

● Start a single analytics container on the current login node.

● Specify a Conda environment to start the Dask workers and Dask Scheduler with.

● Set up SSH tunnels for UIs.

● Set up SSH between OSA container nodes.

Certain environment variables may be set before running the start_analytics command to modify the
behavior of the analytics cluster. Setting values for these variables is optional. Furthermore, these variables have
reasonable default values.

NOTE: If these environment variables need to be set, they must be set prior to running
start_analytics. Setting them at a later point will have no effect.

● MINERVA_USE_LOGIN - If this environment variable is set, the interactive shell will run on the login rather
than a compute node. This allows better external connectivity for build and environment tools that need to
download new packages.

● SPARK_LOOPBACK_SIZE - Sets the size of the per-node loopback mounted local file system used by Spark
for local storage. The default value of this variable is 256 GB.

● SPARK_EVENT_DIR - Sets the location for Spark event logs.

The start_analytics script features the -d option that starts a single analytics container on the current login
node. No job allocation is required. Spark can still be used in local mode. This is useful for performing
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development work, such as creating Conda environments, building applications, running single node tests etc. In
addition, the -d option enables performing development tasks with full access to the analytics environment,
without having to wait for a job allocation. Since this option provides better access to the external network, it can
be useful for downloading new packages for builds.

For more information, see the start_analytics man page.

3.4 Start Up an Analytics Cluster and the Analytic Programming
Environment

Prerequisites
This procedure assumes that the workload manager being used is either Slurm, PBS Pro or Moab Torque.

About this task
Urika-XC enables users to create their own analytics clusters on a set of nodes allocated from Slurm or Moab
Torque. Once created, this cluster also contains Anaconda Python, BigDL, and optionally Dask Distributed, if it
was started with the appropriate options.

Procedure

1. Load the analytics module.

$ module load analytics

2. Optional: Set values for environment variables if needed. For more information, refer to Start an Analytics
Cluster and Run OSA Jobs Using the start_analytics Command on page 8

3. Allocate the desired number of nodes and execute the start_analytics command.

Example for Slurm:

$ salloc -N 18 start_analytics

Executing the start_analytics command presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed.

3.5 Execute Commands Inside Shifter Containers Using the
run_training Script

The run_training script executes a command, such as a TensorFlow distributed training Python script, etc.,
inside a Shifter container on each node. After accepting the command, run_training sets up the run-time
environment, such as for training applications that may have been written to take advantage of the Cray machine
learning plugin. By default, run_training will pass (to the user-specified command) a comma-delimited list of
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the nodes that were allocated by the user through their workload manager (WLM). This comma-delimited list of
nodes will be appended to the end of the command-line arguments of the user-specified command.

While using run_training:

● The -e option of the run_training script activates a Conda environment that is visible to the Conda
installed inside the image. This Conda environment can be either one of those provided inside the image or
one created by the user outside the image.

● If the -e option is specified, and the training job involves TensorFlow, then the TensorFlow libraries expected
by Python in the environment are assumed to be installed in that environment.

For a full list of options and more information, refer to the run_training man page.

3.6 Apache Spark Support
Apache™ Spark™ is a fast and general engine for data processing. It provides high-level APIs in Java, R, Scala
and Python, and an optimized engine.

● Spark Core, DataFrames, and Resilient Distributed Datasets (RDDs) - Spark Core provides distributed
task dispatching, scheduling, and basic I/O functionalities.

● Spark SQL, DataSets, and DataFrames - The Spark SQL component is a layer on top of Spark Core for
processing structured data.

● Spark Streaming - The Spark Streaming component leverages Spark Core's fast scheduling capabilities to
perform streaming analytics.

● MLlib Machine Learning Library - MLlib is a distributed machine learning framework on top of Spark.

● GraphX - GraphX is a distributed graph processing framework on top of Spark. It provides an API for
expressing graph computations.

This section provides a quick guide to using Apache Spark. Please refer to the official Apache Spark
documentation for detailed information about Spark, as well as documentation of the Spark APIs, programming
model, and configuration parameters.

Urika-XC ships with Spark 2.2.0.

Run Spark Applications
The Urika-XC software stack includes Spark configured and deployed to run in a Shifter container, with a per-
node cache for local temporary storage.

To launch Spark applications or interactive shells, use the standard Spark launch scripts from the interactive
container that is created when an analytics cluster is launched using start_analytics. These scripts include:

● spark-shell

● spark-submit

● spark-sql

● pyspark

● sparkR

● run-example
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The Spark start up scripts will by default start up a Spark instance across all cores in the allocation. To request a
smaller or larger instance, pass the --total-executor-cores No_of_Desired_cores command-line flag.
Memory allocated to Spark executors and drivers can be controlled with the --driver-memory and --
executor-memory flags. By default, 32 Gigabytes are allocated to the driver, and 32 Gigabytes are allocated to
each executor, but this will be overridden if a different value is specified via the command-line, or if a property file
is used.

Further details about starting and running Spark applications are available at http://spark.apache.org

Build Spark Applications
Spark 2.2.0 builds with Scala 2.11.8.

Urika-XCships with Maven installed for building Java applications (including applications utilizing Spark’s Java
APIs), and Scala Build Tool (sbt) for building Scala Applications (including applications using Spark’s Scala APIs).
To build a Spark application with these tools, add a dependence on Spark to the build file. For Scala applications
built with sbt, add this dependence to the .sbt file, such as in the following example:

scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.1"

For Java applications built with Maven, add the necessary dependence to the pom.xml file, such as in the
following example:

<dependencies>
    <dependency> <!-- Spark dependency -->
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.11</artifactId>
      <version>2.2.0</version>
    </dependency>
</dependencies>

For detailed information on building Spark applications, please refer to the current version of Spark's
programming guide at http://spark.apache.org.

Spark Configuration Differences
Spark’s default configurations on Urika-XC have a few differences from the standard Spark configuration:

● Changes to improve execution over a high-speed interconnect - The presence of the high-speed Aries
network on Urika-XC changes some of the tradeoffs between compute time and communication time.
Because of this, the default settings of spark.shuffle.compress has been changed to false and that of
spark.locality.wait has been changed to 1. This results in improved execution times for some
applications. If an application is running out of memory or temporary space, try changing this back to true.

● Increases to default memory allocation - Spark’s standard default memory allocation is 1 Gigabyte to each
executor, and 1 Gigabyte to the driver. Due to large memory nodes, these defaults were changed to 32
Gigabytes for each executor and 32 Gigabytes for the driver.

● Local temporary cache - Spark on Urika-XC is configured to utilize a per node loopback filesystem provided
by Shifter for it's local temporary storage.

Conda Environments
PySpark on Urika-XC is aware of Conda environments. If there is an active Conda environment (the name of the
environment is prepended to the Unix shell prompt), the PySpark shell will detect and utilize the environment's
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Python. To override this behavior, manually set the PYSPARK_PYTHON environment variable to point to the
preferred Python. For more information, see Enable Anaconda Python and the Conda Environment Manager on
page 12.

3.7 Enable Anaconda Python and the Conda Environment Manager

About this task
Urika-XC OSA images come with the Anaconda Python distribution version 5.0.0, including the Conda package
and environment manager. This is the recommended Python distribution for running analytic jobs using Urika-XC.
If there is an active Conda environment, PySpark will automatically utilize Anaconda.

Procedure

1. Load the analytics module

$ module load analytics

2. Allocate resources, using workload management specific commands.

The following example is specific to Slurm.

$ salloc -N numberOfResources

3. Start an analytics cluster.

$ start_analytics 

For more information, refer to the start_analytics man page.

This will place the user on a node running an interactive container. nid00030 is used as an example for an
interactive container node in this procedure.

4. Create a Conda environment.

The following example creates a Conda environment with scipy and all of its dependencies loaded:

[user@nid00030 ~]$ conda create --name scipyEnv scipy

IMPORTANT: Use the conda config --add envs_dirs path_to_directory command if it is
required to set an alternate environments directory for Conda. path_to_directory must be a
directory that is mounted within the container. This is particularly useful when the home
directory space is limited.

5. Activate the Conda environment.

[user@nid00030 ~]$ source activate scipyEnv

For more information about Anaconda, refer to https://docs.anaconda.com. For additional information about
the Conda environment manager, please refer to http://conda.pydata.org/docs/
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3.8 About Dask
Dask is a Python based parallel programming library that combines with the Numeric Python ecosystem to
provide parallel arrays, data-frames, machine learning, and custom algorithms. It supports multiple styles of task
scheduling, as well as multiple parallel data structures. The Dask distributed package for Python is a distributed
scheduler that allows Dask computations to be parallelized across multiple nodes. Dask Distributed requires
starting up a single scheduler process, in addition to one or more worker processes.

To learn more about Dask, visit http://dask.pydata.org/en/latest/, https://dask.pydata.org/ and https://
distributed.readthedocs.io/.

Dask on Urika-XC is supported with Anaconda Python versions 2.7, 3.5, and 3.6. It is currently not supported with
Python 3.4 as this version of Python does not support the Dask Scheduler files that Urika-XC uses to coordinate
workers with the Client and Scheduler.

CAUTION: Dask Distributed versions 1.20 and latter are not compatible with Urika-XC. If Conda attempts
to install these versions in the environment, users may force the earlier version by manually specifying
"distributed=1.19 bokeh=0.12.7" while creating the Conda environment.

Urika-XC automatically sets up Dask Distributed in the analytics cluster if start_analytics is executed with
certain options. For more information, see the start_analytics man page.

3.8.1 Use Dask to Run Python Programs

About this task
This procedure provides instructions for using Dask to create a Conda environment and then launching an
analytics cluster to run a Python program on the cluster.

Procedure

1. Log on to a login node.

2. Load the analytics module.

$ module load analytics

3. Create a Conda environment with Dask, Dask Distributed packages, as well as any other Python packages
and versions to use with Dask.

This can be done in development mode as well.

CAUTION:

Dask Distributed versions 1.20 and latter are not compatible with Urika-XC 1.1. To prevent Conda
from installing these versions in the environment, users may force the earlier versions of Dask
Distributed and Bokeh (which distributed depends on) by manually specifying "distributed=1.19
bokeh=0.12.7" when creating the Conda environment.
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Alternatively, the incompatibilities in Dask Distributed 1.20 may be worked around by adding "use-
file-locking: false" to the end of the user_home_directory/.dask/config.yaml file.

$ start_analytics -d
bash-4.2$ conda create --name mydaskenv dask distributed biopython python=3.5
bash-4.2$ conda info --envs
conda environments:
mydaskenv /home/users/name/.conda/envs/mydaskenv
bash-4.2$ exit

4. Allocate resources and start an analytics cluster, using the --dask/-k option to start Dask and the --dask-
env/-e option to specify the Conda environment.

$ salloc -N 40 start_analytics -k -e mydaskenv
Analytics cluster ready.  Type 'spark-shell' for an interactive Spark shell.
(mydaskenv) 

5. Run a Python program or start an interactive REPL.

To use Dask Distributed while running a Python program, specify the scheduler file location when initializing
the client. The scheduler file location can be found in $DASK_SCHED_FILE.

(mydaskenv) python
Python 3.5.3 |Continuum Analytics, Inc.| (default, Mar  6 2017, 11:58:13) 
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> from dask import bag
>>> from distributed import Client
>>> client = Client(scheduler_file=os.environ['DASK_SCHED_FILE'])
>>> 

3.9 About Intel BigDL
The BigDL distributed deep learning library was developed for Apache Spark and is targeted at Spark users who
want to apply deep learning to data already available through Spark. BigDL also allows users to develop and run
deep learning applications from within Spark. BigDL leverages Spark to efficiently scale-out BigDL to run across
multiple nodes, but can also be run on a single node as a local Java or Scala program.

BigDL is modeled after Torch and provides support for adding deep learning (both training and inference) to Spark
applications and workflows. Users can also load pre-trained Caffe or Torch models into Spark programs using
BigDL.

For more information, visit https://bigdl-project.github.io/0.3.0/ and review the section 'Getting Started' for an
introduction to BigDL. In addition, the section 'Programming Guide for BigDL' covers BigDL concepts and APIs for
building deep learning applications.

BigDL on
BigDL is built with MKL support and is pre-installed on . The BigDL distribution package is located
under /opt/bigdl-0.3.0/dist in the software. The version of BigDL used on is 0.3.0.

Use the following environment variables (which are set automatically) to run a deep learning tasks with the BigDL
toolkit:
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● BIGDL_DIR: Carries the location of the BigDL files necessary to set up the environment and attach the proper
configuration and JAR files

● BIGDL_JAR: Carries the location of the BigDL JAR file to be used when starting a Spark shell.

3.9.1 Run Intel BigDL Programs Using spark-submit or spark-shell

Prerequisites
This procedure assumes that the workload manager being used is either Slurm, Moab Torque or PBS Pro.

About this task
BigDL uses the Intel MKL library to achieve high performance. The LeNet on MNIST "Hello World" deep learning
example trains LeNet-5 on the MNIST data using BigDL. For more information, visit https://bigdl-project.github.io/
0.3.0/ and see the section titled 'Training LeNet on MNIST - The "hello world" for deep learning'. The MNIST
database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. It is a
subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size
image.

As an example, this is how the user would build the LeNet MNIST example.

Procedure

1. Log on to a login node.

2. Start up Spark and the analytics programming environment.

a. Load the analytics module.

$ module load analytics

b. Optional: Set values for environment variables if needed.

c. Allocate the desired number of nodes in the interactive mode and execute the start_analytics script.

The following example is specific to Slurm:

$ salloc -N 34 start_analytics

Executing the start_analytics script presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed. For more information, refer to
the start_analytics man page.

3. Run the LeNet training as a standard Spark program using spark-submit

$ spark-submit --total-executor-cores 640 \
--conf spark.executor.instances=32 --conf spark.executor.cores=20 \
--conf spark.shuffle.reduceLocality.enabled=false \
--class com.intel.analytics.bigdl.models.lenet.Train \
$BIGDL_DIR/lib/bigdl-0.3.0-jar-with-dependencies.jar \
-f /dir/username/mnist -b 2560 -r 0.10 --checkpoint ./tests/log/model 

The parameters used in the preceding examples include:
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● -f: Specifies where the MNIST data is placed.

● --checkpoint: Specifies where the model/train_state snapshot can be cached. Input a folder and
ensure the folder is created this example is run. The model snapshot will be named as
model.#iteration_number, and train state will be named as state.#iteration_number. If there
are any files already existing in the folder, the old file(s) will not be overwritten for the safety of model files.

● -b: Specifies the mini-batch size. It is expected that the mini-batch size is a multiple of node_number *
core_number, i.e., the product of the number of nodes and the number of cores-per-node.

3.9.2 Run Intel BigDL Programs Using PySpark

Prerequisites
This procedure assumes that the workload manager being used is either Slurm, Moab Torque or PBS Pro.

About this task
This procedure enables users to run PySpark applications on images using Intel® BigDL. In the following
procedure, the bigdl.sh script is used with the spark-submit and spark-shell options for executing the
Textclassification example with the GloVe and News20 datasets. The text classification test requires the
GloVe (Global vectors for Word Representation) dataset, which is approximately 823 MB. Since job allocation
may timeout if this dataset is downloaded at runtime, the dataset should be downloaded before running any tests.
The tests need to be modified to access datasets from a local directory. To modify the text classification example,
change the function calls in textclassification.py from:

news20.get_news20()
new20.get_glove_w2(dim=embedding_dim)

to:

news20.get_news20(source_dir=”pathto/dataset”)
news20.get_glove_w2v(source_dir=”pathto/dataset”,dim=embedding_dim)

Procedure

1. Log on to a login node.

2. Start up Spark and the analytics programming environment.

a. Load the analytics module.

$ module load analytics

b. Optional: Set values for environment variables if needed.

c. Allocate the desired number of nodes in the interactive mode and execute the start_analytics
script.

$ salloc -N 34 start_analytics
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Executing the start_analytics script presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed. For more information, refer to
the start_analytics man page.

3. Set the root environment to access Spark libraries.

$ source activate root

4. Create a variable for Python libraries.

$ export PYTHON_API_ZIP_PATH=${BIGDL_DIR}/lib/bigdl-0.3.0-python-api.zip

5. Set the Python path.

$ export PYTHONPATH=${PYTHON_API_ZIP_PATH}:$PYTHONPATH

6. Use the spark-submit command to execute the pyspark test.

In the preceding, -b: Specifies the mini-batch size. It is expected that the mini-batch size is a multiple of
node_number * core_number, i.e., the product of the number of nodes and the number of cores-per-node

$ spark-submit --total-executor-cores 640 --conf spark.executor.instances=32 \
--conf spark.executor.cores=20 --py-files ${PYTHON_API_ZIP_PATH},\
./tests/py_files/v0.3.0_py3/textclassifier.py --jars ${BIGDL_JAR} \
--conf spark.executorEnv.PYTHONHASHSEED=123 \
./tests/py_files/v0.3.0_py3/textclassifier.py -b 2560 --max_epoch 3 --model cnn

3.9.3 Get Started with Intel BigDL
Intel® BigDL programs can be executed after launching a Spark shell. Use the following methods to get familiar
with using BigDL for performing deep learning tasks:

● Run spark-shell with BigDL.

$ spark-shell --properties-file $BIGDL_DIR/conf/spark-bigdl.conf --jars $BIGDL_JAR

● Use the BigDL Tensor API.

scala> import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.Tensor
scala> Tensor[Double](2,2).fill(1.0)
res0: com.intel.analytics.bigdl.tensor.Tensor[Double] =
1.0          1.0
1.0          1.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 2x2]

● Use the LeNet on MNIST "Hello World" deep learning example, which trains LeNet-5 on the MNIST data
using BigDL. For more information, visit https://bigdl-project.github.io/0.3.0/ and see 'Training LeNet on
MNIST - The "hello world" for deep learning' in the 'Examples' section under the 'Scala User Guide'. The
MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000
examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and
centered in a fixed-size image.

● Build complex deep learning models and applications using BigDL examples accessible at https://bigdl-
project.github.io/0.3.0/. These examples are pre-built with the BigDL distribution and demonstrate how to use

About Open Source Analytics (OSA) Images

S2589   17

https://bigdl-project.github.io/0.3.0/
https://bigdl-project.github.io/0.3.0/
https://bigdl-project.github.io/0.3.0/


BigDL to train and evaluate several of the supported neural network models. Use the following bash script to
call one of these pre-built examples:

# Launch BigDL job
function launchBigDLJob() {
 # echo "Entering function: launchBigDL"
 local worker_nodes=`expr $SLURM_JOB_NUM_NODES - 2`
 local cores=`expr $worker_nodes '*' 20`
 local batch_size=`expr $cores '*' 4`
 echo "Number of Worker_nodes $worker_nodes"
 echo "Running BigDL LeNet5 training with $cores cores with batch size $batch_size"
 
$ spark-submit --total-executor-cores $cores \ 
--conf spark.executor.instances=$worker_nodes --conf spark.executor.cores=20 \ 
--conf spark.shuffle.reduceLocality.enabled=false \ 
--class com.intel.analytics.bigdl.models.lenet.Train \ 
$BIGDL_DIR/lib/bigdl-0.1.1-jar-with-dependencies.jar \ 
-f /lus/snx11254/userName/mnist -b $batch_size -r 0.10 \ 
--checkpoint ./tests/log/model # echo "Exiting function: launchBigDLJob"
}

3.9.4 Run Intel BigDL Programs as Local Java or Scala Programs

Prerequisites
This procedure assumes that the workload manager being used is either Slurm, PBS Pro or Moab Torque.

About this task
Intel® BigDL can be run on a single node as a local Java or Scala program outside of Spark, as described in the
following procedure.

Procedure

1. Load the analytics module.

$ module load analytics

2. Optional: Set values for environment variables if needed.

3. Set DL_CORE_NUMBER to the desired number of cores and set BIGDL_LOCAL_MODE to true to indicate that
BigDL needs to run locally or outside of Spark.

$ export BIGDL_LOCAL_MODE=true
$ export DL_CORE_NUMBER=8
$ scala -cp my_bigdltests_2.11-1.0.jar:$BIGDL_JAR MyLeNetTrainLocal -f \
/lus/scratch/datasets/mnist

Depending on the language, use the following format for executing this code:

● Java:

java -cp fileName.jar:/opt/scala-2.11.8/lib/scala-reflect.jar usersMainClassName

● Scala:

scala -cp fileName.jar usersMainClassName

In the preceding examples, fileName represents the name of JAR file(s) containing the user's main class,
as well as all the associated dependencies.
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3.9.5 BigDL Logging
BigDL implements a method named redirectSparkInfoLogs, which is is is used in many BigDL examples to
redirect logs of org, akka, and breeze to bigdl.log with a log setting of INFO, except
org.apache.spark.SparkContext. This method returns error messages to the console. By default, the
bigdl.log log file will be generated under the current directory or workspace from where spark-submit is
launched.

The following import and call to redirectSparkInfoLogs() will be seen in the example codes.

import com.intel.analytics.bigdl.utils.LoggerFilter
LoggerFilter.redirectSparkInfoLogs()

Set the value of the -Dbigdl.utils.LoggerFilter.disable Java property to true to disable the
redirection of these logs to bigdl.log, as shown in the following example:

-Dbigdl.utils.LoggerFilter.disable=true

By default, all the examples and models in the code will be redirected. Specify where the bigdl.log file will be
generated by setting the value of the Dbigdl.utils.LoggerFilter.logFile parameter to the desired
location, as shown in the following example:

Dbigdl.utils.LoggerFilter.logFile=path

By default, it will be generated under current workspace. Extra Java properties are passed into spark-submit
using the spark.driver.extraJavaOptions and spark.executor.extraJavaOptions configuration
parameters.

For example, to run the LeNet5 Training example and have the bigdl.log file stored in a different directory than
the current working directory, include the --conf spark.driver.extraJavaOptions="-
Dbigdl.utils.LoggerFilter.logFile=/lus/scratch/my_bigdl_logs/bigdl.log" setting, as
shown in the following example:

$BIGDL_DIR/bin/bigdl.sh -- spark-submit --total-executor-cores 640 \
--conf spark.executor.instances=32 --conf spark.executor.cores=20 \
--conf spark.shuffle.reduceLocality.enabled=false \
--conf spark.driver.extraJavaOptions="-Dbigdl.utils.LoggerFilter.logFile=\/lus/scratch/my_bigdl_logs/bigdl.log" \
--class com.intel.analytics.bigdl.models.lenet.Train $BIGDL_DIR/lib/bigdl-0.1.1-jar-with-dependencies.jar \
-f /lus/snx11254/kristyn/mnist -b 2560 -r 0.10 --checkpoint ./tests/log/model

Use logging messages to easily track the epoch/iteration/loss/throughput directly from the log file when
running Training with BigDL.

For example use the grep Epoch bigdl.log or grep Iteration bigdl.log commands to monitor
training progress. Similarly, use the grep Accuracy bigdl.log command to monitor model convergence.
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4 About the Cray Graph Engine (CGE)
CGE is a highly optimized software application designed for high-speed processing of interconnected data. It
features an advanced platform for searching very large, graph-oriented databases and querying for complex
relationships between data items in the database. It provides the tools required for capturing, organizing and
analyzing large sets of interconnected data. CGE enables performing real-time analytics on the largest and most
complex graph problems, and features highly optimized support for inference, deep graph analysis, and pattern-
based queries.

4.1 CGE Features
Major features of CGE are listed below:

● An optimized query engine for high-speed parallel data analysis.

● Support for submitting queries, updates and creating checkpoints.

● A rich CLI.

● The CGE graphical user interface, which acts as a SPARQL 1.1 end point. This interface enables editing
SPARQL queries or SPARUL updates and submitting them to the CGE database. It also accepts a set of
commands that allow users to perform various tasks, such as creating a checkpoint on a database, setting
Name Value Pairs (NVPs) to control certain aspects of data preprocessing, and query processing etc.

● SPARQL query language extension via the INVOKE and PRODUCING operators, which allow a classical graph
algorithm to be passed an RDF graph and for the algorithm’s results to be returned as data that is compatible
with SPARQL 1.1. This enables graph algorithm library calls to be nested within a SPARQL query.

● Support for SPARQL aggregate functions.

● Multi-user support.

● Capability to cancel queries.

● Compatibility with POSIX-compliant file systems.

● Database preprocessing to apply inference rules to the data, as well as to index the data.

● CGE Python, CGE Java and CGE Spark APIs

● Support for a number of built in graph algorithms.
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4.2 Get Started with Using CGE

Prerequisites
This procedure requires CGE to be installed on the system.

About this task
This procedure can be used to get started with using CGE and can be considered as a "Hello World" program. In
this procedure, a simple query is executed on a small RDF triples database. This procedure provides instructions
for executing queries and viewing the results via the CGE CLI and the front end.

Use the cge-cli help command to view a full range of CGE CLI commands. Use the –h option of any
command to view detailed help information about any specific command.

For a full set of CGE features, built in functions, graph algorithms, CGE API, troubleshooting and logging
information, review the Cray Graph Engine (CGE) Users guide at https://pubs.cray.com.

Procedure

Authentication Setup

1. Set up SSH keys.

$ ssh localhost

If the preceding command allows re-logging into the login node without a password, then the SSH keys are
set up sufficiently for using CGE. If the previous command fails and there are existing SSH keys that do not
use pass-phrases or have the ssh-agent defined, then try the following

$ cat ~/.ssh/id_*.pub >> ~/.ssh/authorized_keys

At this point, if it is possible to run the aforementioned text and to re-log in to the login node without using a
password, pass-phrase, or ssh-agent, then this step can be considered to be complete. On the other hand, if
the aforementioned text fails, there are no SSH keys defined yet. The following commands can be used to set
them up.

CAUTION: Before executing the following commands, ensure that there are no existing SSH keys
because this will overwrite any existing keys. Also, do not specify a pass-phrase when running ssh-
keygen

$ mkdir -p ~/.ssh
$ chmod 700 ~/.ssh
$ ssh-keygen
$ chmod 600 ~/.ssh/id_*
$ chmod 600 ~/.ssh/authorized_keys

Dataset Creation

2. Create a file named dataset.nt and store it in a directory that has been selected or created for it.

This directory must be a new directory and contain at least one of the following if the data set is being built for
the first time with CGE (only one of these will actually be used):

● dataset.nt - This file contains triples and must be named dataset.nt

About the Cray Graph Engine (CGE)

S2589   21

https://pubs.cray.com


● dataset.nq - This file contains quads and must be named dataset.nq

● graph.info - This file contains a list of pathnames or URLs to files containing triples or quads and must
be named graph.info.

This is the original, human readable representation of the database. The following example data, which
should be added to dataset.nt, can be used for this procedure.

<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "World" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Home Planet" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Earth" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hello" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hi"  .

Results Directory Creation and CGE Server Start-up

3. Select or create another directory into which the query engine should write the results and then launch the
CGE server in a terminal window.

$ cge-launch -I 1 -N 1 -d /dirContainingExample/example –o \ 
/dirContainingExampleOutput -l :2

For more information about the cge-launch command and its parameters, see the cge-launch man page.

The server will output a few pages of log messages as it starts up and converts the database to its internal
representation. When it finishes, the system will display a message similar to the following:

Serving queries on nid00057 16702

Query Execution via CGE CLI

4. Execute a query using the CGE CLI.

$ cge-cli query example.rq
0 [main] WARN com.cray.cge.cli.CgeCli  - User data hiding is enabled, logs will obscure/omit user 
data.  Set cge.server.RevealUserDataInLogs=1 in the in-scope cge.properties file to disable this 
behaviour.
5 [main] INFO com.cray.cge.cli.commands.queries.QueryCommand  - Received 1 queries to execute
13 [main] INFO com.cray.cge.cli.commands.queries.QueryCommand  - Running Query 1 of 1
0              6              123         0              file:///mnt/central/user/results/
queryResults.2017-07-04T13.59.57Z000.18232.tsv                    
688 [main] INFO com.cray.cge.cli.commands.queries.QueryCommand  - Query 1 of 1 succeeded

In the preceding example, the example.rq file contains the following query:

SELECT ?greeting ?object
WHERE
{
  <http://cray.com/example/greeting> <http://cray.com/example/text> ?
greeting .
  <http://cray.com/example/spaceObject> <http://cray.com/example/hasName> ?
object .
}

Use the following query to print just "Hello World" as the output:

SELECT ?greeting ?object
WHERE
{
  <http://cray.com/example/greeting> <http://cray.com/example/text> ?greeting .
  <http://cray.com/example/spaceObject> <http://cray.com/example/hasName> ?
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object .
  FILTER(?greeting = "Hello" && ?object = "World")
}

Results Review

5. List the contents of the results directory and review the contents of the output file to verify that the query’s
results are stored in the output directory specified in the cge-launch command.

$ cd /dirContainingExampleOutput
$ ls
queryResults.34818.2015-10-05T19.33.53Z000.tsv
$ cat queryResults.34818.2015-10-05T19.33.53Z000.tsv
?greeting    ?object
“Hello”      “Home Planet”
“Hi”         “Home Planet”
“Hello”      “World”
“Hi”         “World”
“Hello”      “Earth”
“Hi”         “Earth”

CGE Front End Launch

6. Launch the CGE front end in another terminal window.

$ cge-cli fe --ping 

The --ping option in the preceding example is used to verify that the database can be connected to
immediately upon launch and that any failure is seen immediately. Not doing so may delay and hide failures. If
the ping operation does not succeed, and it is certain that the user executing this command is the only user
running CGE, and that everything else is set up correctly, the user should go back to the first step and make
sure that the SSH keys are set up right. The system may prompt to trust the host key when the fe command
is run for the first time.

Alternatively, the following command can be used to have the web server continue running in the background
with its logs redirected, even if disconnected from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

7. Point a browser at http://loginNode:3756 to launch web UI, where loginNode is the name of the login
node the front end is launched from.

The CGE SPARQL protocol server listens at port 3756, which is the default port ID.

When the CGE front end has been launched, a message similar to the following will be returned on the
command-line:

49 [main] INFO com.cray.cge.cli.commands.sparql.ServerCommand - 
CGE SPARQL Protocol Server has started and is ready to accept HTTP 
requests on localhost:3756

Query Execution via the CGE Front End

8. Execute a query against the dataset created by typing in the query and selecting the Run Query button.
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Figure 1. CGE Query Interface

The following example query will match the data and example output shown in the next step:

SELECT ?greeting ?object
WHERE
{
  <http://cray.com/example/greeting> <http://cray.com/example/text> ?
greeting .
  <http://cray.com/example/spaceObject> <http://cray.com/example/hasName> ?
object .
}

After the query finishes executing, the output file containing the query's results will be stored in the output
directory that was specified in the cge-launch command.

CGE Front End Termination

9. Quit the terminal using the CTRL+C keyboard shortcut.

CGE Server Shutdown

10. Execute the following command to halt the CGE server, if needed.

$ cge-cli shutdown
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5 Set Up SSH Tunnels for UIs Using
start_analytics

About this task
An SSH tunnel can be useful for connecting to a UI running on the interactive node from a different box. One or
more SSH tunnels can be set up from the host login node to the interactive node using the --ssh-tunnel option
of the start_analytics command.

In the following instructions:

● localPort is the user’s machine, such as a laptop

● loginPort is the login node of the XC system

● UIport is the interactive node

Procedure

1. Log on to a login node.

2. Allocate resources.

The following example is specific to Slurm.

$ salloc -N 4

3. Load the analytics module.

$ module load analytics

4. Start up an analytics cluster with an SSH tunnel from the interactive node to the XC system's login node.

$ start_analytics --ssh-tunnel loginPort:UIPort

Multiple --ssh-tunnel options can be passed to the start_analytics command to start up more than
one SSH tunnels, as shown in the following example:

$ start_analytics --ssh-tunnel loginPort1:UIPort1 --ssh-tunnel loginPort2:UIPort2

In the above example, UIPort and loginPort are used as examples for ports that the UI under
consideration is running on the interactive node, and forwarded to on the login node, respectively. This
mechanism can be used to launch TensorBoard and Jupyter Notebook at the same time.
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6 Execute a Simple Jupyter NoteBook
About this task
This procedure provides instructions for executing Jupyter Notebooks on the system.

Procedure

1. Log on to a login node.

2. Obtain a job allocation.

The following example is specific to Slurm:

$ salloc -N 4
salloc: Granted job allocation 7983
salloc: Waiting for resource configuration
salloc: Nodes nid00[180-183] are ready for job

3. Load the analytics module

$ module load analytics

4. Execute the start_analytics command, specifying the login and UI ports.

Running with the --login-port and --ui-port options also automatically sets the
JUPYTER_RUNTIME_DIR environment variable. If this variable is not set to a writeable directory, Jupyter will
not run inside containers.

$ start_analytics --login-port loginPort --ui-port UIPort

Here

● loginPort is the port to use on the login node.

● UIPort is the port that the UI runs on.

Alternatively, perform both the preceding steps in one go, as shown in the following example:

$ salloc -N 4 start_analytics --login-port loginPort --ui-port UIPort

5. Start the Jupyter Notebook application.

To use Jupyter with a Conda environment, install Jupyter in the Conda environment, and activate the
environment before running the jupyter notebook command.

The following example assumes that Jupyter Notebook is not being used with a Conda environment.

$ jupyter notebook --port UIPort
[I 20:23:57.376 NotebookApp] Serving notebooks from local directory: /home/
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users/username
[I 20:23:57.376 NotebookApp] 0 active kernels 
[I 20:23:57.376 NotebookApp] The Jupyter Notebook is running at: http://
localhost:9100/?token=6aacf7f9e13c412921a4fde10ae51d638065f60839114193
[I 20:23:57.376 NotebookApp] Use Control-C to stop this server and shut down 
all kernels (twice to skip confirmation).
[W 20:23:57.380 NotebookApp] No web browser found: could not locate runnable 
browser.
[C 20:23:57.381 NotebookApp] 
    
    Copy/paste this URL into your browser when you connect for the first time,
    to login with a token:
        http://localhost:9100/?
token=6aacf7f9e13c412921a4fde10ae51d638065f60839114193 

6. Create an SSH tunnel from the localhost to the XC login node in a new terminal window.

$ ssh -L localPort:localhost:loginPort hostname

Here, loginPort should match the login port specified in step 4. localPort is the port to use to view the
UI from on the local machine. hostname is the login node that start_analytics was run on in step 4.

7. Copy and paste this URL into a browser when connecting for the first time.

To login with a token, point a browser at http://localhost:localPort/?. Enter the received token
when prompted.

8. Shut down the Jupyter Notebook server by killing the Jupyter process on the interactive node.
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7 Visualize Statistics with TensorBoard
About this task
TensorBoard is a set of web applications that can be used for analyzing TensorFlow graphs. This procedure helps
getting starting with using TensorBoard.

For more information, visit https://www.tensorflow.org.

Procedure

1. Allocate resources.

$ salloc -N numberOfNodes

2. Load the analytics module.

$ module load analytics

3. Start an analytics cluster using one of the following mechanisms.

● $ start_analytics --login-port loginPort --ui-port UIPort
● $ start_analytics --ssh-tunnel loginPort:UIPort

This mechanism will automatically tunnel the UI port of the interactive node to loginPort on the login
node.

4. Run the TensorFlow or BigDL application with instrumented code to generate TensorBoard summary data and
store the summary data in a directory of choice.

In this procedure it is assumed that the summary data is stored in logDirName.

5. Run TensorBoard after activating a sample TensorFlow Conda environment.

$ tensorboard --logdir="logDirName" --port=UIPort

TensorBoard can be started even when the application is running. The statistics can be visualized as the
training progresses. Another approach is to run TensorBoard after the training to perform post-run analysis.

6. Create a tunnel to the login node port on the login node.

$ ssh -L localPort:localhost:loginPort hostname

Here, loginPort should match the login port specified in step 3. localport is the port it is required to view
TensorBoard the UI from on the user's machine. hostname is the login node that start_analytics was
run on in step 3.
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For example, if 7801 is specified as the loginPort and it is required to view TensorBoard on the local
machine on port 7800, execute:

$ ssh -L 7800:localhost:7801 hostname

7. Point a browser at localhost:localPort to visualize TensorBoard.

For example, if the local port is 7800, point a browser at localhost:7800

If multiple users are running TensorBoard, ensure that the ports being used are unique. For example, in
addition to the above run of TensorBoard, another user may be running another TensorFlow or BigDL
application and may want to run TensorBoard. In such cases, it is important to ensure that the UIPort is
forwarded to the host on interactive node.

This can be achieved by performing the following tasks:

1. Add additional ports to start_analytics

Pass a unique login port to start_analytics. For example, if the login port 7801 is busy, pass this
login port to start_analytics as follows:

$ start_analytics --login-port 7802 --ui-port 7800

To check if a port is in use, execute:

$ nc -z localhost PORT_NUMBER
$ echo $?

The port specified is available for use if the preceding command returns 1.

2. Run TensorBoard.

$ tensorboard --logdir="logDirName" --port=UIPort
3. Open another terminal window on the local machine and execute:

$ ssh -L localPort:localhost:loginPort hostName

For example, if the local port is 7800 and login port is 7802, run:

$ ssh -L 7800:localhost:7802 hostname
4. Open TensorBoard, by pointing a local browser at localhost:7800 to visualize statistics from the

second application.

For more information, refer to the start_analytics man page.
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8 Set up SSH Between OSA Container Nodes
Prerequisites
This procedure requires the Shifter configuration to use the Shifter SPANK plugin for Slurm. For more information,
refer to https://github.com/NERSC/shifter/wiki/SLURM-Integration.

About this task
This procedure can be used to SSH between the Open Source Analytics (OSA) container nodes. It is currently
only supported on systems that use Slurm as their workload manager.

Procedure

1. Log on to a login node.

2. Load the analytics module.

$ module load analytics

3. Allocate the desired number of nodes, specifying the image.

$ salloc -N 10 --image=$ANALYTICS_IMG

Here $ANALYTICS_IMG is the environment variable that specifies the image to load into the container. This
variable is set automatically when the user executes the module load analytics command.

This command will return a list of node IDs of the allocated nodes.

4. Start the analytics cluster, specifying the -s/-ssh option.

$ start_analytics -s

5. Verify that it is possible to SSH between the cluster nodes by attempting to SSH to a node, using one of the
node IDs returned in step 1.
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9 Run TensorFlow with the Cray PE Machine Learning
Plugin

Prerequisites
This procedure requires:

● Urika-XC software with Cray programming environment machine learning plugin for using run_training
examples.

● The CuDNN library is required for running TensorFlow on GPU nodes. Users may need to download CuDNN
from NVIDIA if their site does not already have it installed.

About this task
The Cray Programming Environment Machine Learning plugin (CPE ML plugin) enables scaling and significantly
higher productivity to deep learning (DL) frameworks. This capability is intended for users needing faster time to
accuracy and is based on data-parallel DL training. TensorFlow users on Urika-XC start with a serial (non-
distributed) Python training script, include a few simple lines for the CPE ML Plugin, and are then able to train
across many nodes at very high performance. User that already have distributed gRPC-based Python training
script can also use the CPE ML plugin to obtain better performance by by-passing gRPC setup. The CPE ML
plugin has both C and Python interfaces for the communication needs of DL training.

Modifying a TensorFlow Training Script to use the CPE ML Plugin

The CPE ML plugin module includes two examples of training scripts modified to use the plugin. The
modifications needed include:

● A call to the initialize the CPE ML plugin

● A call to broadcast initial model parameters to all ranks

● Possible modifications to learning rate decay schedules and other mini-batch size dependent parameters to
account for the effective mini-batch size across all processes

● A call to communicate gradients among processes after local gradient calculation but before applying
gradients

● A call to finalize the CPE ML plugin

About MNIST and tf_cnn_benchmarks

● MNIST- This is an example of modifying a serial training script to use the CPE ML plugin. The script is
available in /opt/cray/pe/craype-ml-plugin-py3/1.0.1/examples/tf_mnist/mnist.py. The
script is documented with any modifications, and the
file /opt/cray/pe/craype-ml-plugin-py3/1.0.1/examples/tf_mnist/README also describes the
modifications.
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● tf_cnn_benchmarks - This is an example of modifying a script already able to run across multiple nodes
through gRPC to instead use the CPE ML plugin. Both capabilities (gRC and the Plugin) are available as
options in this script, and the script can be used to benchmark scaling and performance of various CNNs
using either gRPC or CPE ML Plugin. The source files for this benchmark are located
in: /opt/cray/pe/craype-ml-plugin-py3/1.0.1/examples/tf_cnn_benchmarks. Any
modifications are documented inside the source files, and the
file /opt/cray/pe/craype-ml-plugin-py3/1.0.1/examples/tf_cnn_benchmarks/README
describes the changes in detail.

About the run_training script

The run_training script allows the user to execute a distributed job using MPI or the Cray programming
environment machine learning plugin. The user specifies the number of processes to run on each allocated node
via the -ppn argument, and also specifies how many processes to run across all allocated nodes via the -n
argument, as shown in this procedure.

Procedure

1. Load the analytics module.

$ module load analytics

2. Allocate the desired number of nodes in interactive mode or as part of a SLURM or PBS job submission
script. If the XC system being used has GPUs, and it is required to use them for TensorFlow, be sure to add
options for requesting nodes with GPUs.

An example of SLURM using an interactive session requesting two NVIDIA P100 nodes is shown below
(users should refer to documentation provided by their site for exact allocation syntax):

$ salloc --nodes=2 --exclusive --gres=gpu -C P100

For PBS, a similar request may look like:

$ $ qsub -I -l nodelist=GPUNodeIDs -l nodes=2

3. Switch to the current working directory to copy the contents
of /opt/cray/pe/craype-ml-plugin-py3/1.0.1/examples/tf_cnn_benchmarks/* (which are the
TensorFlow examples packaged with the plug-in) to the current working directory if it is required to run the
tf_cnn_benchmark example provided with the CPE ML plug-in.

$ cd workingDir
$ cp -r /opt/cray/pe/craype-ml-plugin-py3/1.0.1/examples/tf_cnn_benchmarks/* .

4. Execute the training script with run_training.

5. Submit a TensorFlow command to the run_training script.

If the Cray PE machine learning plugin is installed on the system, it can be used as a test case in this step.
This procedure assumes the plugin is installed.

GPU example using 2 nodes with one process per node with user's CuDNN v5.1 library located
at /home/users/alice/CuDNN/cudnn-8.0-v51/cuda/lib64
$ run_training -n 2 --ppn 1 --cudnn-libs /home/users/alice/CuDNN/cudnn-8.0-v51/cuda/lib64 \ 
--no-node-list "python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=64 --model=inception3 \ 
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--train_dir=/home/users/alice/tf_cnn_train --data_name=imagenet --variable_update=ps_ml_comm \ 
--num_intra_threads=1 --local_parameter_device=gpu"

CPU without the need for CuDNN v5.1.num_intra_threads should be set to the number of cores
available on the Xeon or Xeon Phi node. On Xeon Phi users should set num_inter_threads to 2 to use
additional hyper threads. Users can obtain cudnn libraries from https://developer.nvidia.com/cudnn.

Intel Xeon example for Broadwell dual socket 18 core nodes:

$ run_training -n 2 --ppn 1 --no-node-list "python tf_cnn_benchmarks.py \ 
--device=cpu --num_intra_threads=36 --mkl=True --batch_size=64 \ 
--train_dir=/home/users/alice/tf_cnn_train --data_name=imagenet --variable_update=ps_ml_comm \ 
--data_format=NHWC --local_parameter_device=cpu"

Intel Xeon Phi example for KNL single socket 64 core nodes:

$ run_training -n 2 --ppn 1 --no-node-list "python tf_cnn_benchmarks.py \ 
--device=cpu --num_intra_threads=64 --num_inter_threads=2 --mkl=True --batch_size=64 \ 
--train_dir=/home/users/alice/tf_cnn_train --data_name=imagenet --variable_update=ps_ml_comm \ 
--data_format=NHWC --local_parameter_device=cpu"

To use the CuDNN library inside containers interactively via the start_analytics command, specify the
CuDNN libraries via the --cudnn-libs option, as shown in the following example:

$ start_analytics --cudnn-libs /home/users/username/CuDNN/cudnn-8.0-v51/cuda/lib64

For more information, refer to the start_analytics and run_training man pages.

Additional Help and Tuning Options

To access more information about using and tuning the CPE plugin users can load the following module:

$ module load craype-ml-plugin-py3

The intro_ml_plugin describes the C interface and environment variables for tuning performance. The
Python interface is documented in the Python module. To view this information after load the module

$ python
>>> import ml_comm as mc
>>> help(mc)
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10 Create New Conda Environments with TensorFlow
About this task
By default two TensorFlow libraries of versions 1.3 built for Python 3.6 are installed in /opt/tensorflow_cpu
and /opt/tensorflow_gpu. One version is for systems that use only CPUs, whereas the other can be used on
systems that have a combination of CPUs and GPUs.

The Urika-XC image contains two sample Conda environments with TensorFlow for Python 3.6:

● py36_tf_cpu for systems using CPUs only

● py36_tf_gpu for systems using both CPUs and GPUs

Users can activate these environments according to their platforms.

The run_training script has an option to automatically activate a Conda environment via the -e option. The
wheels for these TensorFlow builds are available inside the image. There are 2 additional wheels provided for
TensorFlow built for Python 2.7, one for systems using CPUs only and one for systems using both CPUs and
GPUs.

The locations of these four wheels are:

● Versions for CPUs only: /opt/tensorflow_cpu-1.3.0/wheel

● Version for CPUs and GPUs: /opt/tensorflow_gpu-1.3.0/wheel

To run Python 2.7 TensorFlow inside the image, the user can create a new Python 2.7 Conda environment along
with pip and install one of the wheels provided in the image. The user can also activate their own environment by
specifying it via the -e option to the run_training script.

The following items should be kept under consideration while using the -e option:

● The -e option of the run_training script activates a Conda environment that is visible to the Conda
installed inside the image. This Conda environment can be either one of those provided inside the image or
one created by the user outside the image.

● If -e option is specified, and the training job involves TensorFlow, then the TensorFlow expected by the
Python in the environment is assumed to be installed in that environment.

Use the following instructions to create a new environment with TensorFlow for Python 2.7 for CPUs.

Procedure

1. Log on to a login node.

2. Load the analytics module

$ module load analytics
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3. Obtain a Slurm job allocation.

$ salloc -N 4 start_analytics
salloc: Granted job allocation 7983
salloc: Waiting for resource configuration
salloc: Nodes nid00[180-183] are ready for job

4. Execute the following in the analytics shell.

$ conda create -n python2 python=2.7 pip
$ source activate python2
$ pip install /opt/tensorflow_cpu-1.3.0/wheel/tensorflow-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl

5. Exit the cluster.

$ exit

6. Execute commands as needed in the new environment.

$ run_training -e python2 command
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11 Train Inception-V3 Using GRPC-Distributed
TensorFlow

About this task
The GRPC protocol provides features such as authentication, bidirectional streaming, flow control, blocking/
nonblocking bindings, cancellation and timeouts. It generates cross-platform client and server bindings for many
languages.

The run_training command can be used to train distributed TensorFlow applications with the GPRC protocol
on CPUs and GPUs. It can also be used to train distributed TensorFlow applications with the GPRC protocol
within a Conda environment.

To learn more about TensorFlow and Inception-V3, visit https://www.tensorflow.org.

Cray recommends using the Cray PE machine learning plugin for optimal scaling of distributed TensorFlow.
However, Urika-XC also provides the option to use GRPC based distributed TensorFlow instead of the machine
learning plugin.

Procedure

1. Log on to a login node.

2. Load the analytics module.

$ module load analytics

3. Clone the contents of the inception directory of the TensorFlow models.

# git clone https://github.com/tensorflow/models

4. Prepare the data in TensorFlow format.

a. Download and convert the ImageNet data to native TFRecord format.

To learn more about ImageNet, visit http://www.image-net.org. The TFRecord format consists of a set of
sharded files, where each entry is a serialized tf.Example proto. Each tf.Example proto contains the
ImageNet image (JPEG encoded) as well as metadata, such as label and bounding box information.

b. Sign up for an account with ImageNet to gain access to the data by locating the sign up page, creating an
account and requesting an access key to download the data.

c. Specify the location where the ImageNet data should be placed.

DATA_DIR=$HOME/imagenet-data

d. Build the preprocessing script.
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$ cd inception
$ bazel build //inception:download_and_preprocess_imagenet

e. Execute the preprocessing script.

$ bazel-bin/inception/download_and_preprocess_imagenet "${DATA_DIR}"

f. Enter the username and password when prompted. Enter the username and password when prompted.
Once these values are entered, the script doe not require any further user interaction.

The final line of the output script should contain the following:

Finished writing all 1281167 images in data set.

When the script finishes executing, DATA_DIR will contain 1024 training files and 128 validation files. The
files will match the patterns train-?????-of-01024 and validation-?????-of-00128,
respectively.

5. Copy over the tensorflow-examples/inception/imagenet_distributed_train.py.slurm and
tensorflow-examples/inception/inception_distributed_train.py file (which are the Inception
and Imagenet distributed train files) to the inception/inception/ directory.

$ cp tensorflow-examples/inception/imagenet_distributed_train.py.slurm inception/inception/ 
$ cp tensorflow-examples/inception/inception_distributed_train.py inception/inception/ 

6. Edit the tensorflow_dist_inception.example template located under
tensorflow-examples/inception to specify values for the required variables.

● INCEPTION_DIR: The location of inception model. This is the Inception directory under the TensorFlow
models directory, which was cloned above.

● IMAGENET_DIR: The location of imagenet_distributed_train.py.slurm.

● IMAGENET_TRAIN_DIR: The location for training results and the model checkpoint.

● IMAGENET_DATA_DIR: The location of the imagenet data.

7. Run the training using the run_training command.

run_training takes one mandatory argument, namely a command CMD (e.g., a TensorFlow distributed
training Python script) to run inside the Shifter container on each node. Once provided with this mandatory
argument (and possibly optional arguments), run_training sets up the run-time environment, e.g., for
training applications that may have been written to take advantage of the Cray ML plugin. By default
run_training will pass to CMD a list of comma-delimited list of nodes, previously allocated by the user
through their work load manager (WLM). The CMD is responsible for using these nodes, such as, for
distributed training. In case the user application does not expect or may fail upon receiving extra arguments,
the passing of node list may be suppressed by providing the command-line option --no-node-list to
run_training.

To execute run_training on CPUs, execute:

$ run_training tensorflow-examples/inception/tensorflow_dist_inception.example

To train a model using GPU, download the cudNN libraries from https://developer.nvidia.com/cudnn into a
directory which is provided to the run_training command using the --cudnn-libs option, and then
specify the path to the cudNN libraries as follows:

In the following examples, /path/to/cudnn is used as an example to the path to cudNN libraries.
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$ run_training tensorflow-examples/inception/tensorflow_dist_inception.example \
--cudnn-libs /path/to/cudnn/cudnn-8.0-v51/cuda/lib64

The user can also specify a Conda environment to execute TensorFlow applications in. For example, to use a
different version of the numpy library that is installed in a Conda environment named e, execute:

$ run_training --env e --cudnn-libs /path/to/cudnn/cudnn-8.0-v51/cuda/lib64 \
tensorflow-examples/inception/tensorflow_dist_inception.example

This will activate the Conda environment named e before the application is run.
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12 Urika-XC Quick Reference Information
Log files for a given Urika-XC service are located on the node(s) that the respective service is running on.

● Cray Graph Engine (CGE) - CGE logs are stored in the location specified via the -l option of the cge-
launch command. The default log level of CGE CLI is set to 8 (INFO). In addition, the log-reconfigure
command can also be used to modify log levels. Alternatively, use GUI controls on the Edit Server
Configuration page to modify log levels. Changing the log level in this manner persists until CGE is shut
down. Furthermore, restarting the CGE server is not required if the log level is changed. Restarting CGE
reverts the log level to 8 (INFO)

● Spark - Default Spark log levels are controlled by the /tmp/spark/conf/log4j.properties file. Default
Spark settings are used when the system is installed, but can be customized by creating a new
log4j.properties file. A template for this customization can be found in the
log4j.properties.template file. The Spark service does not need to be restated if the log level is
changed.

○ Spark event Logs - Urika-XC stores Spark event logs in per-user directories. By default, the location
is /lus/scratch/sparkHistory/ if it is available, or $HOME/.minerva/sparkHistory if it is not.
User may override this and select their own event log directory by setting the environment variable
SPARK_EVENT_DIR prior to running start_analytics. Users may copy these event logs to their local
machines, and locally execute the Spark History Server or any other tools which parse event logs.

○ Spark worker logs - These logs reside in the $HOME/.minerva/sparkHistory directory on the local
nodes they run on.

DataWarp Access from Shifter Containers
To access DataWarp from Shifter containers, an admin would need to edit
the /etc/opt/cray/shifter/udiRoot.conf file's siteFs parameter to add the following:

/var/opt/cray/dws:/var/opt/cray/dws:rec:slave

For more information, refer to S-2571, 'XC™ Series Shifter User Guide'.

Default Port Assignments
Table 1. Default Port Assignments for Urika-XC Services

Service Default Port

CGE cge-launch command 3750. See S-3010, "Cray® Graph Engine Users Guide"
for more information about the cge-launch command
or see the cge-launch man page.

CGE Web UI and SPARQL endpoints 3756
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Major Software Versions
Table 2. Urika-XC Software Component Versions

Software Component Version

CGE 3.2UP00

Apache Spark 2.2.0

Anaconda Distribution of Python 5.0.0

Dask 0.14.3 and later

Dask Distributed 1.16.3 to 1.19.1

Intel BigDL 0.3.0

Analytics Programming Environment

Python 3.6 as part of Anaconda 5.0.0. Anaconda also supports
creating pythong environments with 2.7, 3.4, and 3.5

Java 1.8

Scala 2.11.8

R 3.4.1

Maven 3.3.9

SBT 0.13.9

ANT 1.9.2

TensorFlow 1.3.0

Jupyter NoteBook 4.3.0
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